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Abstract

This paper characterizes the short- and long-run Cournot equilibrium with heterogeneous firms
and stochastic technological change. In our model, firms have different technologies with heteroge-
neous fixed and variable costs and various degrees of markups. In a framework with homogeneous
firms, Mankiw and Whinston (1986) show that the long-run Cournot equilibrium may be inefficient
due to too many entries. We extend their result to the case of heterogeneous firms and show that
higher industrial concentration of production is welfare improving. Using administrative data for
French manufacturing firms, we estimate a wide degree of unobserved heterogeneity in both fixed
and variable costs. Our simulation results show that markups surprisingly only induce slight ineffi-
ciencies in the allocation of output, implying that it is almost compatible with welfare maximisation.
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1 Introduction

Firms’ cost efficiency importantly affects welfare and the standard of living. If firms increase their
efficiency in the production process, they are able to produce more without incurring higher costs. In
a competitive environment, this decreases output prices, and, consequently, increases consumer welfare.
If firms have market power, they usually lack incentives to convert the increase in efficiency into an
increase in output and a decrease in prices. This hampers the growth of more efficient firms and leads to
a (socially) inefficient allocation of production, and negatively affects consumer welfare. See for instance
Berry et al. (2019) and Syverson (2019) for literature reviews and detailed discussions on market power
and macroeconomic implications.

To measure firms’ cost efficiency and the effect of misallocation implied by market power on welfare,
most studies, however, employ cost functions with restrictive functional forms by neglecting fixed costs
and unobserved heterogeneity.1 This has important consequences: such specifications are not able to yield
plausible (optimal) output levels and are not suited to investigate issues related to the size distribution
of firms and its determinants, and produce biased results and inference. A sound analysis of efficiency
and welfare at the firm-level, therefore, requires cost functions with multiple dimensions in unobserved
heterogeneity. Moreover, this specification cannot be simply additive, since heterogeneity in the fixed costs
vanishes in the derivation of the profit-maximizing condition and is useless for generating heterogeneous
firm size. Conversely, heterogeneity in the variable cost function is unable to explain why so many small
firms make positive profits while others do not.

In this paper we propose a novel framework allowing for joint heterogeneities in fixed and variable
costs, embedded in the Cournot competition model, where heterogeneous firms interact strategically,
choosing their optimal output level given aggregate output, cost and demand parameters. The model
not only allows us to investigate the interplay between fixed and variable costs, and firm size, but also to
disentangle the effects of technological efficiency, market power, and allocative inefficiency on welfare.

The contribution of the paper to the literature is threefold. First, we empirically implement the
theoretical results related to the existence and unicity of the Cournot equilibrium. More precisely, while
this literature often considers industries with identical firms and symmetric equilibrium, there are some
interesting exceptions. Novshek (1985) showed that a short-run Cournot equilibrium exists under weak
conditions on firms’ cost function. Unicity of the short-run Cournot equilibrium with heterogeneous firms
was derived by Gaudet and Salant (1991). In the long-run, when firms’ entry and exit occurs, Acemoglu
and Jensen (2013) and Okumura (2015) proved that the existence of the Cournot equilibrium still holds
(but is no longer unique in general). We contribute to this literature and amend the homogeneous firm
Cournot model and investigate differences in technologies and their interplay with firm size. While our
purpose is mainly empirical, we also describe the theoretical implications of heterogeneous technologies at
the firm level, both on the short- and the long-run Cournot equilibrium. Interestingly, we show that there
is an ordered relationship between firm size (in terms of output) and their type of heterogeneous technol-
ogy. While the theoretical framework for the occurrence of joint heterogeneity and their interdependence
is studied by Chen and Koebel (2017), we are not aware of any theoretical contribution simulating the
welfare implications of operating heterogeneous firms at Cournot equilibrium.

Second, using administrative French firm-level data, we contribute to the existing empirical literature
by explicitly introducing joint heterogeneity in the fixed cost and in the variable cost of production and
study the interplay between both types of heterogeneity. A large part of the literature tackling the
issue of productivity and technological change bases its identification strategy on the production function
(Ericson and Pakes, 1995). Considering a production function is helpful to estimate productivity, but is

1Most studies in the empirical literature rely on efficiency measures derived from production functions (such as translog
or Cobb-Douglas) whose corresponding cost functions neglect fixed costs.
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not suitable to identify fixed, variable and average costs. The empirical literature on cost functions mainly
focuses on univariate heterogeneity, either in the variable cost function (Davis, 2006) or in the fixed cost
function (Berry, 1992) or in total cost (Esponda and Pouzo, 2019). While these specifications all entail
unidimensional heterogeneity in the total cost function, we allow for multidimensional heterogeneity in
both the fixed and the variable cost functions. For that purpose, we propose an appropriate identification
and estimation strategy of the Cournot model, composed of the inverse demand function addressed
to an industry and (nonlinear) cost functions with multidimensional unobserved heterogeneity. More
specifically, we estimate in a first step the inverse demand function, applying instrumental variable and
fixed effects methods to deal with the simultaneity bias. In a second step, we use the obtained demand
parameters to estimate in a nonlinear system-equation approach the firm-level cost and output supply
functions. Here, we have to deal with the incidental parameter problem occurring when taking into
account unobserved heterogeneity in fixed and variable costs over firms and across time: the number
of free parameters to be estimated increases with the number of observations, leading to inconsistent
estimates when not appropriately handled. A further factor causing inconsistent estimates if not taken
into account arises when heterogeneity is unobserved and neglected while being correlated with firms’
decision variables, i.e. the optimal level of output.2 To solve these problems, we employ a control-
function approach in combination with nonlinear least squares allowing us to consistently estimate the
cost function parameters and to uncover the distribution of unobserved heterogeneity in fixed and variable
costs. Our empirical results confirm the theoretical underpinnings, showing a negative relation between
variable and fixed costs: a large share of small firms does not incur any fixed costs, but this share is
significantly decreasing in firm size.

Third, we contribute to literature on the measurement of welfare and misallocation. It is well known
that the short-run Cournot equilibrium is generally not welfare-maximizing. Mankiw and Whinston
(1986) have shown that even in the long-run, firms’ entry and exit do not necessarily contribute to reduce
this inefficiency. We extend their result to the case of heterogeneous firms and empirically investigate to
which extent redistributing output over firms allows an increase in both welfare – by improving allocative
efficiency and reducing total costs – and aggregate industry output. Starting from a long-run Cournot
equilibrium, we perform simulations to evaluate the welfare loss due to markups, output misallocation
and technological inefficiencies.

Measuring misallocation has particularly gained attention in the literature (Hopenhayn, 2014). One
reason for this development is the increasing availability of detailed micro data. Baily et al. (1992), for
instance, use data from US manufacturing establishments between 1972 and 1988, showing that reallo-
cation from less to more efficient production units accounts for half of aggregate productivity growth.
Restuccia and Rogerson (2008) build a general equilibrium model and illustrate that idiosyncratic shocks
to producers’ decisions importantly affect reallocation of resources and by that total output and pro-
ductivity. Hsieh and Klenow (2009) find that if production inputs in China and India were allocated as
efficiently as in the US, aggregate productivity would increase by 30%–50% and 40%–60%, respectively.
Markups, i.e. a firm’s ability to open a gap between output price and marginal costs, are considered
as an important source of market imperfections, and misallocation. For example, Peters (2020) intro-
duces a Bertrand competition framework, where firms increase markups during the life-cycle of their
product(s) by consistently investing in productivity growth. The author then shows that a higher churn
intensity - the rate by which new entering firms replace the products of older firms relative to the rate
at which firms increase their market power - compresses the markup distribution and reduces the degree
of misallocation. Using US data covering the period 1997–2015, Baqaee and Farhi (2020) show in a
general equilibrium approach that reallocation from low- to high-markup firms accounts for about 50%

2In the production function literature, this is also known as the “transmission bias“, see Gandhi et al. (2020) and the
cited literature therein.
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of aggregate productivity growth (since these firms are also highly efficient). However, the authors also
demonstrate that removing firms’ markups would further increase aggregate productivity by 15%. Using
US manufacturing data, Edmond et al. (2023), find a sizable but much lower effect of firms’ markups
and implied missallocation on aggregate productivity and welfare. Our paper shares the purpose of that
literature but contrasts with its result: in France, the sole removal of price markups has had a hardly
visible impact on aggregate output and price. As our simulation shows, the main impact on welfare is
obtained by closing firms with negative profit and reallocating their production to more efficient firms.3

For the empirical analysis, we use French fiscal firm-level data covering the period from 1994 to
2019 (FICUS and FARE data). The data comprises the universe of active firms, but we consider only
those belonging to the manufacturing industry. We consider 184 industries at the 4-digit aggregation
level, within which firms are assumed to produce an homogeneous output and to compete à la Cournot.
Especially for France, the stylized facts document that there are many very small firms but a lack of
medium-sized and few but influential large firms (Ceci-Renaud and Chevalier, 2010).4 In a typical 4-digit
industry, 0.5 % of all firms hire about 39 % of the employees working in this industry, and produce 56 %
of total industry output. The concentration ratio of the 3 and 10 biggest firms are respectively C3 ≃ 53%

and C10 ≃ 70%. These figures document that there are few actors which must have strong market power,
and a large competitive fringe of smaller firms. This seems compatible with the theoretical Cournot
model adopted here, allowing for technological differences between firms.

The reminder of the paper is organized as follows. Section 2 presents the heterogeneous firm setup
and describes the short-run Cournot equilibrium. Section 3 characterizes the long-run equilibrium. The
theoretical results pertaining to the inefficiency of the Cournot equilibrium are discussed in Section 4,
which also describes the welfare-maximizing allocation of production over firms. The data and descriptive
statistics are presented Section 5. Section 6 and 7 discuss the empirical model along with the estimation
strategy and presents the results. Sections 8 and 9 discuss the estimation and the simulation results.
Section 10 concludes.

2 Short-run Cournot equilibrium with heterogeneous quadratic

cost functions

Within each industry firms are competing à la Cournot. In the short-run, there are N active firms facing
the same inverse demand function

p = P (yn +

N∑
j ̸=n

yj), (1)

where p denotes the output price, yn the production of firm n and Y−n ≡
∑N

j ̸=n yj the total output of
firms’ n competitors. We do not introduce subscripts for the industry yet, but it is important to realize
that the inverse demand is specific to industry i.

We assume that the total cost function of each firm is the sum of a firm-specific fixed cost and a
variable cost function:

cn(wn, yn) = un(wn) + vn(wn, yn), (2)

where the fixed cost of production un depends upon input prices wn but also upon technological choices
and constraints which are specific to firm n. The variable cost function vn satisfies, by definition, the

3See also De Monte (2024), who studies the joint evolution of aggregate productivity and markups and the role of
reallocation using similar data on French manufacturing firms.

4Various studies showed that size-dependent regulations in France distort labor allocation and so the employment-based
firm-size distribution (see, for instance, Garicano et al. (2016); Gourio and Roys (2014)). Our paper distinguishes itself
from that literature by aiming to quantify technological differences in fixed and variable costs and how this relates to the
output-based firm size distribution and welfare.
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condition vn(wn, 0) = 0.
Each firm is profit-maximizing and chooses its output level according to the first-order optimality

condition:
P (Y ) + P ′(Y )yn =

∂cn
∂yn

(wn, yn) (3)

where Y denotes the aggregate output level of the industry.
Note that if the fixed cost function un is heterogeneous but the variable cost function vn is the same

over all firms, then (3) implies identical output levels over all firms with the same input prices. Such
a model would attribute differences in firm sizes to differences in input prices. Here, heterogeneity in
variable costs is helpful to yield optimal individual production levels able to approximate the empirical
distribution of firm sizes. The second main advantage of our heterogeneous firm framework is that it can
explain why bigger firms have increasing returns to scale while smaller firms have decreasing returns. In
the homogeneous case with U-shaped average cost functions, returns to scale are increasing for production
levels smaller than the efficient scale of production and decreasing for larger production levels. This is
not necessarily the case here.

We assume the following regularity conditions (which will be empirically investigated later on):

Assumption 1. The inverse demand function P is nonnegative, continuous, differentiable and decreasing
in Y .

Assumption 2. The cost function is continuous in wn and yn, nonnegative, differentiable and increasing
in wn and yn.

Assumption 3. There exist firm-level and aggregate production levels y and Y such that
(i) the marginal revenue is lower than the marginal cost:

P (Y ) + P ′ (Y ) y < ∂cn/∂yn (wn, y) , (4)

for any y > y and Y > Y , and any firm n = 1, ..., N ;
(ii) the cost function is not too concave:

P ′ (Y ) < ∂2cn/∂y
2
n (wn, y) , (5)

for any y < y and Y < Y , and any firm n = 1, ..., N .

A1 and A2 are common in microeconomics and industrial economics. Assumption A3(i) implies that
there is an upper threshold y to individual production (because marginal cost is always higher than
marginal revenue for y > y). A3(i) forbids the occurrence of highly nonconvex cost functions. Condition
A3(ii) is common in the literature on Cournot oligopoly, see Amir and Lambson (2000) for instance. The
Cournot equilibrium exists under relatively mild conditions, and we follow Novshek (1985) who showed
its existence provided that:

Assumption 4. The marginal revenue function satisfies:

P
′
(Y ) + ynP

′′
(Y ) ≤ 0, (6)

for any value of yn ≤ Y < Ny.

A1 and A4 imply that the marginal revenue function is decreasing. A3(ii) and A4 ensure that the
profit function is concave, without requiring convexity of the cost function in y. A4 together with the
second-order condition for profit-maximization imply that firms’ reaction functions are downward sloping.
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Gaudet and Salant (1991) have shown that A1–A4 imply the uniqueness of the Cournot equilibrium. Amir
(1996, Corollary 2.2) used another condition implying the existence of the Cournot equilibrium which is
not equivalent to A4. A4, however, was found to be more useful for deriving some results below.

We follow Novshek (1984) and consider the backward reaction functions as the solution in yn ≥ 0 to
the system of N equations (3), for given values of aggregate output Y and input prices wn:

ybn(wn, Y ). (7)

Assumptions A3(ii) and A4 guarantee that the backward reaction functions are nonincreasing in Y .
Given existence, we then characterize the Cournot’s equilibrium as the solution to the equation

Y =

N∑
n=1

ybn(wn, Y ), (8)

which guarantees that all firms’ projections about aggregate output are fulfilled at equilibrium. We de-
note the equilibrium by Y N , and yNn = ybn(wn, Y

N ), and note that these functions depend upon the
characteristics of all firms active in the industry.5 We have the following interesting implications:

Proposition 1. Under A1–A4, at the Cournot equilibrium with fixed number of firms:
(i) The elasticity of inverse demand ϵ(P, Y ) satisfies −N < ϵ(P, Y ) < 0.
(ii) Firm n’s market share satisfies yNn /Y < −1/ϵ(P, Y ).
(iii) The value of the marginal cost of production decreases with firm size.
(iv) The price markup increases with firm size.
(v) For a subset of N ′ < N active firms, Y N ′

< Y N and yN
′

n > yNn for a firm n active at both Nash
equilibria.

P1 restates several claims that are well known to researchers working in the field of Cournot equilibrium
with heterogeneous firms, but often not to be found in textbooks considering mainly homogeneous firms.
It follows from P1 that if we order firms by size (say from the smallest to the biggest), this implies that
the same order carries over to the markup and the reverse ordering applies to the marginal cost. P1(v)
corresponds to what Mankiw and Whinston (1986) refer to as business-stealing: new entries contribute
to increase total output but reduce the individual production levels of incumbents. In the context of
heterogeneous firms, this result is derived by Acemoglu and Jensen (2013) and Okumura (2015, Lemma
1).

Equality (3) implies an interesting relationship between firms’ profit rate, the inverse demand elasticity
and the rate of returns to scale:

pyNn − cn
cn

=
1

1 + ϵ (P ;Y ) yn/Y
ϵ (cn; yn)− 1. (9)

Ceteris paribus, the higher the rate of return to scale 1/ϵ (cn; yn), the lower the profit rate; the higher
the market share yn/Y , the higher the profit rate. Equation (9) also implies that for a firm with positive
profit there is a lower bound for its market share given by

yNn
Y N

≥ ϵ (cn; yn)− 1

ϵ (P ;Y )
.

Hence, firms with increasing returns to scale must have sufficient market share in order to have positive
5The superscript N denotes both the Nash equilibrium, and the fact that the number of firms is kept constant (no entry,

no exit) here.
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profits.
We rewrite the cost function in order to highlight two key unobserved parameters γu

n and γv
n which

deform the conditional mean functions u and v that are common to all firms:

cn(wn, yn) = γu
nu(wn) + γv

nv(wn, yn), (10)

u(wn) = E[un(wn)|wn] (11)

v(wn, yn) = E[vn(wn, yn)|wn, yn] (12)

The definitions of u and v imply that E[γu] = E[γv] = 1. These heterogeneity parameters can
be correlated with wn, yn (just as in linear fixed-effects models, for instance). While actually any cost
function (2) can be written this way, we now restrict firm heterogeneity to be stochastic and exogenous:

Assumption 5. The technological parameters γn = (γu
n , γ

v
n) are

(i) stochastic and exogenous to the firm,
(ii) known by firms prior to producing and competing à la Cournot.

A5 ensures that the heterogeneity terms are not a deterministic function of the same explanatory
variables as the cost function, and that they are exogenous to the firm, in the sense that they do not
(systematically) change with wn, yn. This assumption can be justified by the fact that the choice of the
technology was made just before the firm first entered the market, and the current value of γu

n and γv
n are

considered as (conditionally) random technological shocks. Note that an increase in γu
n or γv

n corresponds
to a negative technological shock while a decrease in these parameters represents technological progress.
More restrictive versions of A5 are found in the literature, assuming either that γu

n = 0 (Jovanovic, 1982),
γu
n = γu (Hopenhayn, 1992), γv

n iid (Jovanovic, 1982), or γv
n is independent of γu

n (Bresnahan and Reiss,
1991).

The variable cost heterogeneity parameter γv
n is related to the additive “total factor productivity“ term

ωn often considered in the context of production functions. When y = ωnf(x) where x denotes a vector
of inputs, and the production function f is linearly homogeneous in x (which is equivalent to v being
linearly homogeneous in y), then γv

n = 1/ωn. Production functions compatible with the bi-dimensional
heterogeneity like (10) in the cost function are described by Chen and Koebel (2017).

Figure 1 represents five zones characterizing different types of firms. In zone I, firms exhibit higher
than average variable costs and relative low fixed costs. These type of firms can enter or exit the market
without bearing high sunk costs. Zone II corresponds to a zone of generalized inefficiency: firms exhibit
both higher fixed and variable costs. Firms located in zone III are extremely efficient and able to produce
with fixed and variable costs lower than average. Zone IV comprises firms producing with lower than
average variable costs and higher fixed costs. In zone V, firms operate with an average technology and
are similar to a representative firm characterized by E[γu] = E[γv] = 1.
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E[γu]

E[γv]
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Figure 1: Five technological zones

In the different zones depicted on Figure 1, firms are not only different with respect to their technology,
but we also expect to see differences in the levels of the endogenous variables.

Proposition 2. Under A1–A5, at the short-run Cournot equilibrium with fixed number of firms:
(i) Firm i individual production level decreases with γv

i .
(ii) Firm i production level increases with γv

j .
(iii) The aggregate equilibrium level of production decreases with γv

i .
(iv) Individual and aggregate production levels are unaffected by a change in γu

i .
(v) Firm i’s profit decreases with γv

i and γu
i .

(vi) Firm i’s profit increases with γv
j .

This result, proven (for completeness) in Appendix A, follows from the first and second order opti-
mality conditions and the fact that the marginal cost function is positive. It has been generalized by
Acemoglu and Jensen (2013) to cases with multiple equilibria. Related results for input demands have
been derived by Koebel and Laisney (2014). For output supply, Février and Linnemer (2004) obtain
a similar result, but for the case of constant marginal costs. It is intuitive that an increase in firm i’s
marginal cost (through higher γv

i ) decreases its output, but not straightforward to prove due to firm het-
erogeneity and the existence of aggregate Cournot effects in the backward reaction functions. According
to this result, we expect to see bigger firms located in zone III or IV of Figure 1. It is noteworthy (P2(ii))
that despite the output levels of all competing firms decreasing after a favorable productivity shock on
firm i, the aggregate Cournot output is increasing, too (P2(iii)). This means that cost-reducing techno-
logical change hurts firms that are not affected by it, they lose market share, but aggregate production
in the industry increases. The increase in market size outweighs the redistributional effect in the market
shares.

Assumption A5 does not introduce any restriction about the relationship between γu
n and γv

n, and we
considered in P2 that both variables could be shifted independently the one from the other. We now
introduce a form of interrelation between them. The parameter γv

n reflects the efficiency of the variable
cost function: the lower it is, the better for the firm. Conversely, the parameter γu

n is often considered as
an inefficiency, increasing the level fixed cost.

From microeconomic theory, however, we know that the fixed cost is non-decreasing and the variable
cost is non-increasing in the level of fixed inputs – see for instance Varian (1992, Chapter 5.1). When
the level of fixed input(s) is unobserved, because only information on firms’ total capital stock and total
labor demand is available, this induces a negative correlation between the fixed and variable cost.
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Assumption 6. The variable cost efficiency is a transformation of the fixed cost efficiency:

γv = e(γu) + η, (13)

with function e decreasing and strictly convex, and the random term η iid, with an expectation equal to
zero, constant variance and uncorrelated with γu.

Function e transforms the firm-specific fixed cost efficiency γu
n into a variable cost efficiency γv

n char-
acterizing firm n’s production technology. A6 implies that, on average, there is a trade-off between
technological parameters γu

n and γv
n, characterized by e. A6 has an interesting empirical implication:

cov(γu
n , γ

v
n) < 0. (14)

This inverse relationship between fixed and variable costs is often neglected in international trade (com-
pare with Melitz (2003)) or industrial economics (see for instance Bresnahan and Reiss (1991)), where
fixed costs are often considered as a pure inefficiency. We will test whether this assumption or instead
our more general version stated in A6 is satisfied or not.

For our empirical investigation, we need still more unobserved heterogeneity than introduced so far,
and require some more restrictive cost functions. We assume that firms have quadratic cost functions:

Assumption 7. The variable cost function vn is quadratic in production and exhibits heterogeneity in
slope and curvature:

vn(wn, yn) = γv
1nv1(wn)yn +

1

2
γv
2nv2(wn)y

2
n, (15)

and the heterogeneity terms γv
1n, γ

v
2n are stochastic and satisfy A5 and E[γv

1n] = E[γv
2n] = 1.

The quadratic specification of the cost function stated in A7 is compatible with the criteria of local
flexibility of the cost function, which is shown to be important for empirical investigations (Diewert and
Wales, 1987). The family of cost functions defined by (2) and (15) is able to approximate a variety
of cost functions usually considered in the literature. We introduce three multiplicative firm-specific
terms γu

n , γ
v
1n and γv

2n to capture heterogeneity over firms, in both the levels of fixed and variable costs
and in the slope of the variable and marginal costs. This is more general than the uni-dimensional cost
heterogeneity considered by Panzar and Willig (1978). The specification given by (2) and (15) generalizes
the heterogeneous fixed cost specification of Spulber (1995) (who sticks to the constant marginal cost
assumption). It also extends the heterogeneous (but constant) marginal cost specification of Bergstrom
and Varian (1985) and of Salant and Shaffer (1999). While uni-dimensional heterogeneity in marginal cost
is useful to allow for unobserved heterogeneity in the level of firms’ output, bi-dimensional heterogeneity
is important to explain why the growth rate of firms with the same output levels can be different.

The specification of heterogeneity given in (15) is compatible with the former version given in (10) if
we define overall variable cost heterogeneity γv as a weighted average of γv

1n, γ
v
2n as

γv
n =

γv
1nv1(wn)yn + 1

2γ
v
2nv2(wn)y

2
n

v(wn, yn)
, (16)

where the variable cost function v is identical for all firms and defined by evaluating vn at the mean
values E[γv

1n] = E[γv
2n] = 1, that is

v(wn, yn) = v1(wn)yn +
1

2
v2(wn)y

2
n. (17)

While the multi-dimensional technological heterogeneity in (γu
n , γ

v
1n, γ

v
2n) is important from an empirical
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viewpoint, the two-dimensional representation of (γu
n , γ

v
n) based on (16) is helpful for economic interpre-

tation as well as for drawing (two-dimensional) plots and figures.
For γv

2n > 0, the firm-specific average cost function is U-shaped if un > 0 and v2n > 0 and reaches its
minimum for production level y

n
=
√
2γu

nu/(γ
v
2nv2). The efficient scale of production can therefore be

different from one firm to the other (for unobserved technological reasons). The quadratic specification
is convenient as it allows us to obtain an explicit solution for the Cournot’s equilibrium in terms of
(nonnegative) individual and aggregate production levels:

ybn(wn, Y ) =
P (Y )− γv

1nv1(wn)

γv
2nv2(wn)− P ′(Y )

, (18)

Y N =

N∑
n=1

ybn(wn, Y
N ). (19)

This highlights that the firm level of production at the equilibrium yNn = ybn(wn, Y
N ) does not only depend

upon aggregate output and input prices, but also upon the technological parameters γn. Equation (18)
denotes the backward reaction mapping shown by Novshek (1985). It illustrates that ceteris paribus, the
higher the variable cost the lower the production level yNn (see (P2(iii)) if both γv

1n ≥ 0, γv
2n ≥ 0.

Averaging the first order optimality conditions over firms yields

P (Y N ) + P ′(Y N )yN = v1 +
1

N

N∑
n=1

v2ny
N
n . (20)

The Cournot equilibrium is fully characterized by the average marginal cost. Firms do not need to
precisely know the values of (v1n, v2n) of each of their competitors to figure out the Cournot equilibrium:
some distributional statistics are sufficient, such as the number N of competitors, the sample averages
of the marginal cost terms v1, v2, and the covariance cov(v2n, y

N
n ) between the slopes of the marginal

cost and the elementary production levels. Contrary to the case with constant marginal costs, considered
by Bergstrom and Varian (1985), the way production and slope characteristics are jointly distributed
over firms matters at the equilibrium. This extension also allows firms to respond heterogeneously to
exogenous changes in costs and demand.

In order to derive further interesting results, we consider a more restrictive form of heterogeneity
characterized by:

Assumption 8. The variable cost heterogeneity is unidimensional, in the sense that:

γv
1n = γv

2n > 0. (21)

A8 reduces the dimension of heterogeneity and allows us to focus only on marginal cost heterogeneity
instead of having to discuss the first and second derivative of the cost function explicitly. Under A8, γv

n

defined in (16) is independent of (w, y). The restriction (21) could be weakened and is not necessary for
the empirical part of the paper, but it is interesting for giving further intuition on the drivers behind our
empirical findings, which can hold (by continuity) in cases where A8 is not satisfied.

Proposition 3. Under A1–A8, we consider two firms at Cournot equilibrium, both with similar input
prices w and random term η. The Nash equilibrium production levels of firms i and j satisfy yNi < yNj iff
(i) the biggest firm is more productive: γv

i > γv
j

(ii) the biggest firm has a lower variable cost for each unit produced: vi
(
w, yNi

)
/yNi > vj

(
w, yNj

)
/yNj

(iii) the biggest firm has higher fixed costs: γu
i < γu

j and ui (w) < uj (w)

(iv) the biggest firm has a larger efficient scale of production.
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P3 implies that when firms are heterogeneous in their technologies, these differences induce them to
choose different operating sizes, creating a relationship between firms’ production levels and their techno-
logical characteristics. If we order firms into ascending output levels, there is equivalently a corresponding
ordering of the technological parameters γv and the variable unit cost of production. For the fixed costs
and the efficient scale of production, the ordering is only perfect if we control the random term η. With
randomness, the order is preserved on average.

The aggregate production Y N implicitly defined in (19) also depends upon the number N of active
firms, and we now study entry and exit and how adjustment in N affects the main results of this section.

3 The long-run Cournot equilibrium

We now characterize a Long-Run Cournot Equilibrium (LRCE) as a short-run Cournot equilibrium in
which the number of active firms adjusts to exhaust expected profit opportunities. Firms choose either to
enter or exit the market using available information. We denote by N the set of firms indices which are
active, and by M the set of firms’ indices which are inactive. The LRCE corresponds to a game in which
firms choose their activity and production levels simultaneously, see Lopez-Cuñat et al. (1999) who also
compare the simultaneous game with the one where entry and production choices are sequential. Active
firms incur a fixed cost cn (wn, 0

+, γn) = un (wn) and inactive firms have cn (wn, 0, γn) = 0.

Active firms expect nonnegative profits and all potential entrants expect nonpositive profits. We
introduce the superscript C to characterize the long-run Cournot outcomes yCn and Y C . Conditionally
on observables, the cost function is subject to randomness due to unknown technological progress at the
beginning of the period (see A5). It turns out that aggregate production, individual production, and
profits are also random, hence, the entry/exit condition defining the LRCE is given by:

E
[
P
(
Y C
)
yCn − cn

(
wn, y

C
n

)]
≥ 0, (22)

E
[
P
(
Y C + ym

)
ym − cm (wm, ym)

]
≤ 0, (23)

for any n ∈ N and m ∈ M. The expectation operator E denotes the (rational) expectation with respect
to the technological shocks γn which are random (and whose distribution is conditional on information
available to the firm at the time of decision). We assume that conditions (22) and (23) are satisfied by
the data generating process. Acemoglu and Jensen (2013, Theorem 1) or Okumura (2015, Theorem 1)
showed that under A1–A4 the LRCE with heterogeneous firms exists. The equilibrium is not unique
however: different information sets condition the expectations in (22) and (23) and characterize different
LRCE. The distribution of the technological shocks is conditioned by the firms’ specific history: entering
firms draw γnt from a different distribution than firms which have already experienced 20 or 40 years
of activity and which have reached some size. We follow Novshek (1984) and Acemoglu and Jensen
(2013) and consider that firms cannot change their technology without further cost. Conditionally on
observables, differences in the technology over firms (and time) is random (see A5). This is different from
Götz (2005), Acemoglu and Jensen (2013, Section 5.4), and Ledezma (2021) who consider that firms can
choose their production technology optimally. In this context, only the more efficient technologies are
chosen, with the consequence that, at equilibrium, firms tend to be similar in technology and firm size.
It would be challenging with this approach to endogenously generate a distribution of firms’ sizes close
to those usually observed in a given industry.6

6Even in a setup with homogeneous firms, the Cournot equilibrium can be asymmetric, see for instance Novshek (1984).
The corresponding distribution of firm sizes is still very restrictive, however.
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4 Welfare and the optimal distribution of production

We now consider the welfare implications of the observed distribution of output, and investigate, following
Mankiw and Whinston (1986), the welfare loss at the LRCE. In a setup with identical firms, Mankiw
and Whinston have shown that under business stealing (see P1(v)), the free entry equilibrium leads too
many firms to enter the market in comparison to what is optimal from the welfare viewpoint. This result
has been extended by Amir et al. (2014) to a setup where the planner controls either entry (but not
production) or entry and production. In our situation with heterogeneous firms, the central planner has
to carefully consider technological differences when deciding which firm is allowed to produce and how
much. We assume that she knows the technological parameters γn of each firm. The welfare function is
similar to the one of Mankiw and Whinston (1986):

W
(
{yn}Mn=1, {γn}Mn=1

)
=

∫ ∑M
m=1 ym

0

P (s) ds−
M∑

m=1

c (wm, ym, γm) (24)

Note that all M firms are considered as potential contributors to economic activity in W .

4.1 Short-run optimal distribution of production

In the short-run, the planner has to decide whether firm m is entitled to produce or not, and how much
each firm produces, for given firm level technological choices. There is neither entry nor exit, but a firm
can be inactive and produce nothing. In this context, the welfare maximizer is able to remove some
inefficiencies that are introduced by markups and imperfect competition. Technological characteristics
are exogeneous, and the output levels are set such that:

WS ≡ max
{yn}M

n=1

{
W
(
{yn}Mn=1, {γn}Mn=1

)
: {yn ≥ 0}Mn=1

}
.

The Short-Run Optimal Welfare (SROW) is characterized by the first-order Kuhn and Tucker necessary
conditions for an inner maximum for W :

P

(
M∑

m=1

ym

)
=

∂cn
∂yn

(wn, yn)− λn, yn ≥ 0, λn ≥ 0, λnyn = 0, (25)

for n = 1, . . . ,M. The welfare-optimizing individual and aggregate productions are denoted by ySn and
Y S . It follows that a welfare maximizer (i) sets the production level of active firms to equalize price and
marginal cost (ySn > 0 ⇒ λS

n = 0) and (ii) sets ym = 0 for any firm with a marginal cost above the price.
A3(ii) ensures that W is concave in yn at ySn > 0, and that the above first-order conditions are

sufficient for ySn to maximize W . Condition (25) requires that at the optimum, all active firms produce
with the same marginal cost, which contrasts with LRCE at which active firms are characterized by a
price greater than or equal to their marginal cost. The next result characterizes the SROW and extends
Mankiw and Whinston (1986) to a setup with heterogeneous firms.

Proposition 4. Assume A1–A5 and A8. In comparison to the SROW, the LRCE is characterized by:
(i) A lower aggregate production and a higher price: Y C < Y S and P

(
Y C
)
> P

(
Y S
)
.

(ii) Welfare is too low: WC ≤ WS, and profits are too high: πC
n > πS

n .
(iii) Big firms which produce too little, yCn < ySn .
(iv) Small firms with global decreasing returns which produce too much: yCn > ySn

(v) Small firms with increasing returns which either produce too little, or should produce nothing.
(vi) A subset of the firms active at LRCE is still producing a positive quantity at the SROW: NC ≥ NW .
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The proof of P4 (see Appendix A) is constructive in the sense that it characterizes which firm is
producing more and which one will be inactive at the SROW. It also defines a big firm as a firm with
a level of production at the LRCE such that its marginal cost of production is too low for welfare
maximization:

∂cn
∂y

(
wn, y

C
n

)
< P

(
Y S
)
,

and conversely for a small firm. This result is also useful for our empirical purpose of investigating the
efficiency of the LRCE (see Section 9). We use P4 to implement the algorithm to compute the SROW and
the corresponding reallocation of output over firms at the SROW. Contrary to Mankiw and Whinston
(1986), increasing the efficiency of the equilibrium affects firms differently. According to P4(iii) and
P4(iv), it is optimal to reduce the size of smaller firms (with decreasing returns) and increase the size of
bigger firms.

Instead of centralizing all production decisions, the central planner can equivalently introduce a tax
and subvention scheme for inciting firms to produce at the socially optimal level. Comparing the con-
ditions (25) and (3) we see that the aggregate production level of Y S can be decentralized through the
introduction of a sale tax τ specific to each firm and given by:

τn (y) =

∣∣∣∣1− P (Y S)

P (Y C
−n + y)

∣∣∣∣ .
Note that the sale tax rate is decreasing in y at the LRCE and takes a value of zero at the SROW. See
Guesnerie and Laffont (1978) for related results.

An interesting consequence of P4 is:

Proposition 5. Under A1–A8, we consider firms with similar input prices w at Cournot equilibrium.
Assume that the cost functions are convex. Then NS ≤ NC and the Hirschman-Herfindahl index of
concentration is higher at the SROW than at the LRCE.

P5 implies that an efficient industrial policy should not try to minimize industry concentration at all
costs. Actually, the opposite policy would improve welfare in the case of Cournot competition. A related
corollary has been proposed by Salant and Shaffer (1999, Corollary 2), but for a situation where aggregate
production stays constant. We generalize their result to the comparison of two situations with different
levels of aggregate output since Y S ≥ Y N . The economic intuition behind the result is as follows: for
given N the Cournot equilibrium price is too high, P

(
Y N
)
≥ P

(
Y S
)
, by P4(i) and incites small and

inefficient firms to enter the market, while for welfare maximization the planner prefers to increase the
production of the technologically more efficient firms. Those big firms, however, do not spontaneously
increase their production because they are aware that in order to sell it, the firms have to accept a
decrease in price and profits. The proof of P5 is provided in Appendix A, and is both a consequence of
the properties of the Hirschman-Herfindahl index, and of P4, which states that the SROW is achieved
through redistribution of output from the socially inefficient and smaller firms to the efficient and bigger
firms. We, however, need to focus on convex technologies in order to exclude the occurrence of P4(v).
We also reduce the dimension of heterogeneity sources and assume identical input prices. By continuity
in w, P5 still applies if input prices are close enough but not strictly identical for firms n and m.

4.2 Long-run optimal welfare

In the long-run, the planner also has an entrepreneurial duty and selects the production technologies
that will be active at Long-Run Optimal Welfare (LROW). The planner can replicate some production
technologies in order to maximize welfare. In a decentralized economy, in contrast, the type of technology
is private knowledge of the entrepreneurs. Although there is a financial incentive to adopt the most
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efficient technologies, both the firm size distribution and productivity distribution provide evidence for
large differences in technologies.

While at SROW, a firm producing nothing bears the fixed cost un, in the LROW, the cost of inactivity
is zero (the planner forbids entrance of such a firm). The resulting discontinuity of the cost function at
ym = 0 has now to be treated more carefully. A second difficulty is that the planner now has to decide
which technologies to activate and to replicate in the long-run. Formally:

WL ≡ max
{yn,γn}M

n=1

{
W
(
{yn}Mn=1, {γn}Mn=1

)
: {yn ≥ 0}Mn=1 ∧ {γn}Mn=1 ∈ Γ

}
. (26)

The technological set Γ ⊂ R2 denotes the set of all technologies available. The long-run optimal value
satisfies WL ≥ WS , because the planner faces fewer restrictions in (26) in comparison to (25). Solving
this problem numerically, by evaluating W over all discrete elements of Γ, is time intensive: for a given
industry there are MM ordered arrangements of all elements in Γ. For each arrangement it is necessary
to compute the optimal individual and aggregate output levels by solving (25), which is computationally
not feasible. Fortunately, a useful property for reducing the set of candidate technologies for optimal
welfare is available. Under A1 to A7, the SROW individual output quantities ySn are nonincreasing in γv

n,
and the same applies to the aggregate optimal production Y S . This implies that all LROW optimal γ
parameters belong to the technological frontier, defined as the lower (nonconvex) hull of the technological
parameters as:

ΓL = {γn ∈ Γ : ∄γm ∈ Γ ∧ γm < γn} . (27)

This subset ΓL ⊆ Γ can be computed rapidly. At the LROW, the planner can freely choose the technology
in order to maximize welfare, so she considers the lower envelope cost function which corresponds to the
technological long-run:

cL(w, y) = c(w, y; γL) = min
γ∈ΓL

c(w, y; γ) (28)

The cost function cL is now homogeneous over all firms (and is for instance considered by Mankiw and
Whinston (1986)). The long-run technological parameters γL are optimal (and vary with w, y in general).
In the long-run, the following claims are satisfied:

Proposition 6. Under A1–A8, we consider firms with similar input prices w, and ignore the integer
constraint on N . Then
(i) the LROW exists and is unique,
(ii) at LROW all firms have zero profit and local constant returns to scale,
(iii) WL ≥ WS,
(iv) the fixed cost is zero at LROW if e′(γuL) < u(w)/v(w, yL),
(v) it is equivalent to maximizing the central planner problem WL or decentralized profits wrt (yn, γn),

for a given price level which clears the product market with free entry.

By P6(ii), at LROW, all firms produce at the minimum of the average cost, which characterizes local
CRTS. It is not surprising, given that the planer maximizes welfare with less technological constraints
at LROW than in the short-run, that WL ≥ WS . Less common is condition P6(iv) which is compatible
with the use in the long-run of a technology with positive fixed costs. For a small level of yL, however,
the threshold u(w)/v(w, yL) in P6(iv) can be big, and the planner can choose a technology with no fixed
cost, in which case γvL = e(0). When all firms produce the same amount, the Hirschman-Herfindahl
index of concentration is 1/NL.7

7If we consider the integer constraint, then further technologies could be used at LROW in order to produce the residual

14



P6 connects the literature on heterogeneous and homogeneous technologies: at LROW the optimal
technological choice is unique, all active firms use the same technology. Under the above assumptions,
the distribution of firm sizes degenerates to a mass point at yL. This degenerate distribution of output is
far from the observed density of output, and observed heterogeneity alone is only able to explain a narrow
part of the departure between observed and optimal distribution of output. Imperfect competition and
unobserved heterogeneity also contribute to explaining this gap, and we will investigate it empirically.

It is not possible to conclude that at LROW cL/yL ≤ cSn/y
S
n , because lower average costs are achieved

at the price of a higher fixed cost, which is not necessarily efficient at LROW. It is neither true that
Y L ≥ Y S , nor that NL ≤ NS are necessarily satisfied. Regarding the total number of firms active at
LROW, the planner closes all firms producing nothing at SROW (and avoids bearing the fixed cost), and
replicates the most efficient firm. In the long-run, the number of active firms crucially depends upon the
shape of the function describing the relation between variable and fixed cost efficiency, e(γu), which is
an empirical issue.

5 Data and descriptive statistics

We use French fiscal data available at the firm level covering the years 1994 to 2019 (FICUS and FARE
data).8 The data comprises the universe of active firms, but we consider only those belonging to the
manufacturing industry.9 The observations contain information on firms’ balance sheet and income
statements, where each firm is identified by a specific identification number, which is constant over
time. Table 1 lists the manufacturing sectors considered with the corresponding number of firms and
observations.

A basic data cleaning consisted of excluding observations with missing, zero or negative values for
sales, labor cost, material cost, and capital cost. We consider all firms with at least one employee, and
trim the distribution of profit rates, keeping only observations within the 1% and 99% quantiles. This
leaves us with 1,503,299 observations and 172,057 firms. The panel is unbalanced, and on average a given
firm is observed for 8.9 years.

a) Profit rate
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Figure 2: The density of firms’ profit rate and log-levels of production

output.
8FICUS and FARE refer to “fichier de comptabilité unifié dans SUSE“ and “fichier approché des résultats d’Esane“,

respectively. That is, FICUS was part of the French firm-level database SUSE and was replaced in 2008 by FARE, which,
in turn, belongs to the current database ESANE.

9We exclude the industry for food processing (10), the manufacture of tobacco products (12), and the manufacture of
coke and refined petroleum products (19). Industry 10 is excluded as it comprises the overwhelming part of the total number
of firms and should, in our view, be treated separately. Industries 12 and 19 are excluded for reason of the very low number
of observations. See Online Appendix A for more details.
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Firm-level profit rates are defined as (py/c − 1) × 100, and actually represent pure profit rates, as
the user cost of capital is included in the cost of production. The empirical distribution of the observed
profit rates cost is given in Figure 2 and illustrates that the data are fundamentally heterogeneous. The
density of the profit rates (left figure) mimics the distribution of the average cost since by definition
py/c = p/(c/y). The density is not normal, but asymmetric, and exhibits a large tail for values below
the median (of 4.0%) and a thin tail above. The density of the log-levels of production is illustrated on
the right of Figure 2 (over all firms and years).

Some evidence for productive inefficiency is straightforwardly available from the descriptive statistics.
There is a huge heterogeneity in the level of average cost cnt/ynt over firms, which is compatible both
with technological heterogeneity and inefficient output allocation over firms. About 10% of the firms
have an average cost which is three times the median average cost in manufacturing. In each industry,
output reallocation spontaneously occurs, but at a very slow pace. Over the 184 four-digit industries, the
inter-quartile range of cor(cnt/ynt, ynt/Y4t) goes from –0.077 to –0.039. This negative correlation also
means that the average (over firms) of the average cost, is higher than the production share weighted
average cost. In other words, bigger firms have a lower average cost than smaller firms.

Table 1: Description of 2-digit industries

Industrya Description # Firmsb # Obs.c

11 Beverages 3,404 28,558
13 Manufacturing of textiles 6,695 59,549
14 Manufacturing of wearing apparel 14,378 75,828
15 Manufacturing of leather and related products 2,933 21,842
16 Manufacturing of wood and of products of wood and cork 13,115 114,862
17 Manufacturing of paper and paper products 2,725 29,985
18 Printing and reproduction of recorded media 20,611 174,507
20 Manufacturing of chemicals and chemical products 5,104 49,597
21 Manufacturing of basic pharm. products and pharm. preparations 931 8,661
22 Manufacturing of rubber and plastic products 8,511 90,773
23 Manufacturing of other non-metallic mineral products 11,420 98,991
24 Manufacturing of basic metals 2,098 20,181
25 Manufacturing of fabricated metal products 34,578 352,806
26 Manufacturing of computer, electronic, and optical products 6,982 56,847
27 Manufacturing of electrical equipment 4,901 44,049
28 Manufacturing of machinery and equipment 12,974 115,669
29 Manufacturing of motor vehicles, trailers and semi-trailers 4,003 38,262
30 Manufacturing of other transport equipment 1,831 13,745
31 Manufacturing of furniture 14,863 108,587

Total 172,057 1,503,299
a) Statistical classification of economic activities in the European Community, Rev. 2 (2008)
b) # Firms describes the number of unique firms (ids) active over the period 1994-2019.
c) # Obs. describes the total number of observations over period 1994-2019.

5.1 Explained and explanatory variables

Firm-specific data are mainly nominal values and cover the value of production, total labor costs, the
value of intermediate inputs, as well as the capital stock. Firms’ nominal production is measured by the
sum of firms’ sales, stocked production, and production for own use. The value of intermediate inputs is
given by firms’ expenditures for raw materials and other intermediary goods. As proxy for firms’ capital
stock we use the amount of tangible assets reported in the balance sheet. We use industry-specific price
indices (at a two-digit aggregation level) in order to convert the nominal values in real terms.10 The
wage level is firm-specific and is obtained by dividing the labor costs by the number of employees. These
calculations yield the firms’ total production ynt, and input vector xnt = (xk,nt, xl,nt, xm,nt)

⊤ as well as
price indices pnt for output and inputs wnt = (wk,nt, wl,nt, wm,nt)

⊤. In order to calculate the user cost
10The sectoral price data are available in the French national accounts at

https://www.insee.fr/fr/statistiques/2832666?sommaire=2832834
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of capital, wk,nt, we follow Hall and Jorgenson (1967) and set wk,t = wi,nt(1 + rt) − wi,n,t+1(1 − δnt),
with wi,nt denoting the price index for investment (available at the industry level), rt is the long-run rate
of interest and δnt the annual rate of capital depreciation.11 Note that, for our purpose, we only keep
those firm observations with values larger than zero in capital stock, number of employees, intermediate
inputs, and production. The total cost of production is defined as cnt = w⊤

ntxnt.

5.2 Descriptive statistics

Table 2 shows the average number of firms active in a typical 4-digit industry, as well as the distribution
of firm sizes over the 1994–2019 period. At the 4-digit level the number of firms is obtained by dividing
the total number of observations available for the year 2015 by 184, the number of 4-digit industries,
which yields an average number of 310 active firms.12 See Appendix B for further details on the data
cleaning. The table also reports the average number of firms by different firm size (measured by the
number of employees). It shows that the number of firms is globally decreasing in firm size. On average,
most firms have between 2 to 4 employees, representing a share of about 23% of all firms. Table 2 also
informs us about market concentration in a typical 4-digit industry: firms with less than 20 employees
represent about 74% of all firms, and produce only 12% of total production, whereas the few firms with
500 employees and more produce about 52% of the aggregate (4-digit) production. These figures not only
document that there are few actors with strong market power, but also that there is a large competitive
fringe of smaller firms. In our view, this seems compatible with the theoretical Cournot model adopted
here, which allows for unobserved technological differences between firms. This unobserved heterogeneity
is important for yielding a size distribution of firms endogenously, and comparable with the observed
distribution reported in Table 2.13

Table 2: Statistics by firm size in a typical 4-digit manufacturing industrya

Firm sizeb # of firms Share of
firms

Share of
employees

Share of
production

Average
cost

Profit
rate

1 42 13.55 0.37 0.32 92.1 6.2
2–4 73 23.55 1.78 1.05 94.4 3.9
5–9 66 21.29 3.82 2.17 93.9 3.8
10–19 49 15.81 5.69 3.47 93.4 4.1
20–49 47 15.16 12.49 9.12 92.8 4.1
50–99 15 4.84 9.05 7.06 93.9 3.1
100–199 9 2.90 11.09 9.56 94.4 2.5
200–499 6 1.94 15.16 14.56 94.4 2.0
500+ 3 0.97 40.55 52.68 95.8 1.1
Total 310 100.0 100.0 100.0 93.6 4.0
a Columns 3 to 5 report averages over all 4-digit industries and years (1994–2019). Shares are given in

%. Columns 6 and 7 report the median per-unit cost and median profit rate for each firm size.
b Firm sizes are measured by the number of employees.

The last two columns of Table 2 report the median values of the average cost, and profit rate over
all years and firms within a specific size class. These descriptive statistics show that the median value
of the observed average cost of production is smaller for the smallest firms. This helps to understand
why there are so many small firms in France compared to other countries. The highest average cost is
achieved for the biggest firms (with 500 employees and more). This descriptive/empirical pattern already
invites us to conjecture that there is allocative inefficiency at the long-run Cournot equilibrium where

11The interest rate was provided by the Banque de France at: https://www.banque-france.fr/statistiques/taux-et-
cours/taux-indicatifs-des-bons-du-tresor-et-oat. We calculate δnt at the industry level by considering the ratio between
the consumption of fixed capital and fixed capital, see www.insee.fr/fr/statistiques/2383652?sommaire=2383694

12Edmond et al. (2023) calibrate an oligopoly model based on US manufacturing data at the 4-digit level to study the
effect of markups on welfare. Hereby, the total number of firms of an average 4-digit industry is 359, with a large part of
small firms, which appears to be similar to the patterns in our data.

13See also Table B2 in Appendix B, which is complementary to Table 2, and shows the same statistics but for 2-digit
industries.
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inefficient firms are too large. For large firms, higher average costs are sustainable due to their ability to
price above their marginal cost. Heterogeneity in the unit cost of production implies that it is possible to
reduce the total cost of production by reallocating output from firms with high average cost to firms with
lower average cost. It does not imply, however, that big firms are inefficient and should be closed and
replaced by small firms: their minimum level of the average cost could be below the one of small firms,
but they are just lacking incentives to produce at this level in order to preserve their market power. In
order to identify this inefficiency, we have to go beyond these stylized facts and investigate firms’ average
cost curve. We have especially to consider unobserved heterogeneity in the cost of production in order to
obtain consistent estimates of the cost and output supply functions, and assess the degree of inefficiency
of the economy.

6 Inverse output demand estimates

This section studies the output demand addressed to an industry i = 1, . . . , I, and estimates the elasticity
of output demand wrt its price, which is related to the inverse function of (1). The output price index is
available at the two-digit industry level, for I = 22 industries, and for the same time range of 26 years as
in our firm-level data. For the estimation, two years are lost due to differentiating (and so T = 24 years).

We consider the following parametric specification for the output demand for industry i:

lnYit = αi + αY lnYi,t−1 + αp lnPit + αIM lnP IM
it + ϵit (29)

In addition to the (domestic) product price Pit, we include as regressor the price index P IM
it for the imports

of the corresponding goods, which are close substitutes to domestic products considered in Yit. Industry
fixed effects αi are included, and, as adjustment of demand to the prices may not be instantaneous but
under the influence of the lagged level of aggregate quantities, the variable lnYi,t−1 is also taken into
account. Further variables influencing demand are the economy-wide GDP, unemployment rate, and
demographic variables. All these variables are not industry-specific and could be captured by the time
dummies (as in Koebel and Laisney (2016)). With only a 484 observations however, we choose not to
overparameterize our model and consider the more parsimonious specification with 22 industry-specific
fixed effects and 3 parameters. The elasticity of demand wrt domestic product price is then given by αp.

The industry specific effect can be correlated with the explanatory variables and the random term ϵit

is correlated with lnPit since in the aggregate product price adjusts to shocks. We eliminate the industry
specific effect by differentiating over time:

∆ lnYit = αY ∆ lnYi,t−1 + αp∆ lnPit + αIM∆ lnP IM
it + ηit, (30)

with ηit = ∆ϵit.

Several variables that shift the output supply (but not directly output demand) can be considered
as instruments: they are correlated with lnPit and uncorrelated with the random term ηit, so that
E[ηitzit] = 0. The (L × 1) vector zit of instruments includes industry labor cost, the price index of
intermediate consumption as well as the price index exports and imports. Lagged values of the endogenous
variables are also considered as exogenous. For each period, we include up to 3 lag values of lnPit and
lnYi,t−1 in the list of instruments. This gives us a total of L = 130 instruments. Given an (L × L)

weighting matrix W, the GMM estimator is defined by minimizing in α:(
I∑

i=1

T∑
t=1

ηitz
⊤
it

)
W

(
I∑

i=1

T∑
t=1

zitηit

)
= η⊤ZWZ⊤η (31)
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The random terms ηit and ηjs are likely to be correlated, both between industries (which are inter-
dependent) in a given year, and within a given industry over two consecutive time periods. So we use
two-ways clustering and allow for heteroscedasticity, for contemporaneous dependence between residuals
of different industries, and for temporal dependence within a given industry and consecutive time periods.
See for instance Cameron and Miller (2015) for details about multi-ways clustering and Cameron et al.
(2011) for a detailed discussion in the context of GMM. More formally, we assume that

E [ηisηit] = σiist for |s− t| ≤ 1,

E [ηitηjt] = σijtt,

E [ηisηjt] = σijst = 0, for i = j and |s− t| ≥ 2 and for i ̸= j and |s− t| ≥ 1.

As there is no possibility of consistently estimating these parameters, we are instead looking to consistently
estimate the variance matrix V [α̂] of dimension K ×K. It is convenient to define the set S of indices of
the dependent random terms:

S = {i, j, s, t : (i = j, |s− t| ≤ 1) ∨ (i ̸= j, s = t)} .

The cardinality of this set is I(3T − 2) + I(I − 1)T = 12628 and increases with I and T . The GMM
weighting matrix is estimated in a first step (using IV estimates η̂it) by the inverse of

B̂ =

I∑
i=1

I∑
j=1

T∑
s=1

T∑
t=1

zisz
⊤
jtη̂isη̂jt1[i,j,s,t∈S],

where the dummy variable 1[i,j,s,t∈S] = 1 if the indices are included in the set S and 0 otherwise. An
alternative (and easier to code) version of matrix B̂ is:

B̂ = Z⊤(η̂η̂⊤ ◦ S)Z,

where the IT × IT selection matrix S has an entry (h, j) equal to one if the random terms ηh and ηj

are correlated, and zero otherwise. In our case, only about 4.5% of the elements of S are nonzero. The
Hadamard (term by term) multiplication is denoted by ◦. One difficulty comes from the fact that B̂ is
not necessarily positive definite. The same applies to our estimated parameters’ variance matrix:

V [α̂] = (X⊤ZB̂−1Z⊤X)−1,

where the matrices X and Z are respectively of dimension (IT ×K) and (IT × J) with the number of
instruments not smaller than the number of regressors L ≥ K. We follow Cameron et al. (2011) and
impose positive definiteness on the parameters variance matrix by setting negative eigenvalues to zero in
the eigendecomposition.14

Table 3 reports the estimated values of the parameters along with their standard deviations. The
estimates of the fixed-effects and first difference specifications of the output demands are given for the
purpose of comparison in columns 1 and 2. Our preferred specification relies on GMM and the correspond-
ing estimated parameter values are included in the range of the fixed effects (FE) and the first-difference
(FD) estimates. The test for overidentification does not reject the validity of our instruments. Tests for
the occurrence of autocorrelation in the ηit of order two and higher lead to rejecting this hypothesis.
This rejection (together with the high p-value of the over-identification test) supports the validity of our

14We actually compare different methods for imposing positive definiteness, by either restricting matrix S, B,η̂η̂⊤ ◦ S or
V [α̂] to be positive definite; the results were different, but in all cases the diagonal terms of the restricted variance matrix
were much lower than the HAC variance matrix.
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instruments. According to the GMM estimation results, the estimated short-run elasticity of demand
with respect to price is −0.55 and is statistically significant at the 1% threshold. Domestic products
and imports are substitutable with a cross price elasticity of 0.46. The coefficient of lagged output is
estimated at 0.76 and found to be significant. This introduces a gap between short- and long-run price
elasticities. The clustered standard errors are substantially smaller than the HAC-robust standard errors,
probably because additional independence over spaced time periods is assumed when clustering.

Table 3: Output demand estimates

FE FD FD-GMM
αY 0.928

(0.02)
0.040
(0.04)

0.759
(0.07), [0.03]

αp −0.072
(0.07)

−0.747
(0.16)

−0.550
(0.23), [0.08]

αIM −0.004
(0.06)

0.606
(0.16)

0.463
(0.23), [0.07]

OIT - - 0.99

Notes: HAC robust standard errors in
parenthesis, clustered standard errors in
brackets. OIT : p-value of the over-
identification test (for the validity of 130
orthogonality conditions).

These estimates are useful to calculate the inverse demand elasticity which is central in our model,
and also for computing the long-run elasticities, obtained for Yi,t−1 = Yit. The corresponding estimates
are provided in Table 4. The inverse demand elasticity is obtained by ε

(
P d, Y

)
= 1/ε

(
Y d, p

)
and is

estimated to as −1.82 in the short-run and −0.44 in the long-run. Standard errors are obtained using
the delta-method (with the HAC variance matrix).

Table 4: Industry short- and long-run elasticities of output demand

Short-run Long-run
ε̂
(
Y d, p

)
ε̂
(
P d, Y

)
ε̂
(
Y d, p

)
ε̂
(
P d, Y

)
−0.550
(0.18)

−1.818
(0.60)

−2.283
(0.92)

−0.438
(0.18)

Standard errors are given in parenthesis and esti-
mated by applying the delta method.

The short-run inverse price elasticity is substantial. The estimate of the long-run elasticity of demand
wrt price is somewhat bigger (in absolute value) than the estimate of −1.7 obtained by Koebel and
Laisney (2016) for US manufacturing (without controlling for the price of imports, however). With
Cournot competition, there is an interesting relationship between the markup and the market share y/Y ,
parameterized by the inverse demand elasticity:

p

∂c/∂y(w, y)
=

1

1 + ε (P d, Y ) y/Y
. (32)

Using the estimates of Table 4, we draw the estimated short- and long-run relationship between markup
and market-share in Figure 3. Firms in the competitive fringe have a markup of 1. In conformity with
P1(iv), for which Figure 3 provides an illustration, the markup is monotonically increasing in market
share. While in the short-run there is substantial markup, in the long-run this markup falls to the
interval 1.10−1.15, which is much smaller. Instead, in the short-run, sluggish adjustment toward market
equilibrium price and quantity, according to the dynamic relationship (29) with strong anchoring to the
lagged aggregate output level, confers substantial market power and a markup of 1.50− 2.20 to the few
firms with the biggest market share.

20



Our estimate of the inverse demand elasticity satisfies A1 and is also broadly compatible with A4.
Indeed, when the inverse demand elasticity ϵ is constant,

P ′ (Y ) + yhP
′′ (Y ) = ϵ

P (Y )

Y

[
1 + (ϵ− 1)

yh
Y

]
,

which is negative for any individual market share satisfying yh/Y ≤ 1/ (1− ϵ) . Our estimate of this
upper bound is a market share of 39.1% in the short-run, and 73.0% in the long run. It turns out that
the inequalities are respectively satisfied by 98.6% and 100% of the observations.
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Figure 3: The markup and firms’ market share

7 Cost function specification with unobserved heterogeneity

It is well known that unobserved heterogeneity causes estimation biases when it is neglected and correlated
with the explanatory variables – see for instance Wooldridge (2010) for a detailed overview of the linear
model. Unobserved heterogeneity also raises concerns about the incidental parameters, which, especially
in nonlinear models, preclude consistent estimation of parameters and statistics of interest. Martin (2017)
and Wooldridge (2019) consider unobserved multiplicative heterogeneity. We also have to deal with the
endogeneous output level included as explanatory variable in the cost function.

Given the quite long time dimension of our data, we now include a deterministic time trend, t, as a
further argument of the cost function. Further, to allow for variation in firms’ technologies, we estimate
the cost function for each of the 19 2-digit industries separately.15

Unobserved heterogeneity in the fixed and variable costs introduces correlation between their produc-
tion and the random term. We propose an approach to take this endogeneity into account. Our most
general empirical model considers the cost function:

cnt = unt(wnt, t) + v1,nt(wnt, t)ynt +
1

2
v2,nt(wnt, t)y

2
nt + ηcnt. (33)

We assume that the random term ηcnt is such that E[ηcnt|wnt, t] = 0. Regarding unobserved heterogeneity,
we assume a somewhat more general specification than the one considered in the theoretical model, and

15See Online Appendix B for more details on the estimation procedure.
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allow for both multiplicative and additive unobserved heterogeneity. For the variable cost, we consider:

vj,nt(wnt, t) = γ
vj
ntvj(wnt, t) + η

vj
nt, j = 1, 2. (34)

The fixed cost cannot take negative values, so that we specify:

unt(wnt, t) = max
{
γu
ntu(wnt, t) + ηunt, 0

}
. (35)

For the sake of identification, we impose:

E[γj
nt] = 1, E[ηjnt] = 0, j = u, v1, v2. (36)

Cost heterogeneity γnt ≡ (γu
nt, γ

v1
nt , γ

v2
nt) and ηnt ≡ (ηunt, η

v1
nt, η

v2
nt) is known by the firm, which uses this

information to set its optimal output level in order to equalize marginal revenue and marginal cost:

pt + P ′(Yt)ynt = γv1
ntv1(wnt, t) + γv2

ntv2(wnt, t)ynt + ηv1nt + ηv2
ntynt + ηpnt (37)

with the random term ηpnt such that E[ηpnt|wnt, t, γ
v
nt, η

v
nt] = 0. As γnt, ηnt are unobserved to the econo-

metrician, and because these terms are correlated with output, we need to find suitable control variables
to avoid estimation biases. We rely on the assumption:

Assumption 9. The unobserved technological random terms satisfy (for j = u, v1, v2, c):
(i) E[γj

nt|wnt, t, ynt] = E[γj
nt|wnt, t, znt], E[ηjnt|wnt, t, ynt] = E[ηjnt|wnt, t, znt]

(ii) E[γj
nt|wnt, t, znt] = E[γj

nt|znt] = γj(znt) = 1 + (znt − z)
⊤
βj

(iii) E[ηjnt|wnt, t, znt] = E[ηjnt|znt] = ηj(znt) = (znt − z)
⊤
δj.

The first two conditions in A9(i) imply that the dependence between unobserved heterogeneity terms
and ynt can be controlled for by the variables znt. Similar conditions play a central role in Wooldridge
(2019), in the context of correlated random effects. For later use, we also rewrite A9 as:

γj
nt = γj(znt) + ζjnt, ηjnt = ηj(znt) + ξjnt, (38)

whose random terms satisfy

E[ζjnt|wnt, t, ynt] = E[ζjnt|wnt, t, znt] = 0, (39)

E[ξjnt|wnt, t, ynt] = E[ξjnt|wnt, t, znt] = 0. (40)

The last two conditions A9(ii) and A9(iii) imply that unobserved heterogeneity is mean independent
from wnt, t conditionally to znt. Just as with control functions, conditioning on the variables znt allows
us to control for unobserved correlated heterogeneity. For simplicity, in A9 we restrict the functions γj

and ηj to be linear in the parameters and in the control variables znt. The vector of empirical means z

is subtracted from znt to ensure that the unconditional expectations satisfy E[γj
nt] = 1 and E[ηjnt] = 0.

The unobserved γj
nt, η

j
nt values capture the relative state of firm n’s technology at time t in comparison

to a reference technology (denoted by u and vj) that is identical for all firms and time periods. As these
relative efficiency levels are known to the firm, it will produce more when both efficiency indicators are
favorable, which makes output ynt endogenous in the expression of the cost function. According to A9,
however, these relative efficiency levels depend only upon the control variables znt. Similar to Olley
and Pakes (1996) we consider past investment, the age of the firm, and as recommended by Wooldridge
(2019) we include firm-specific averages (correlated with firm specific fixed effects) and the number of
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firms’ occurrences in the survey, to capture selection effects.16

The main empirical implication of A9 is that it allows us to replace the disturbing correlated random
terms γj

nt, η
j
nt in the first-order condition (37), by respectively γj(znt) + ζjnt and ηj(znt) + ξjnt, which

comprise the helpful control functions and unproblematic random terms ζjnt, ξ
j
nt. Using A9, the optimality

condition (37) becomes:

pt + P ′(Yt)ynt = γv1(znt)v1(wnt, t) + ηv1(znt) + γv2(znt)v2(wnt, t)ynt + ηv2(znt)ynt + εpnt (41)

εpnt ≡ ζv1nt + ξv1nt + ζv2ntynt + ξv2ntynt + ηpnt. (42)

Under A9, the random term εpnt satisfies E[εpnt|wnt, t, znt] = 0, but is correlated with ynt through ηpnt.
We circumvent the endogeneity of ynt in (41), by solving this optimality condition in y, which gives our
output supply function:

ynt = ys(pt, wnt, t, znt) + εynt (43)

=
pt − γv1(znt)v1(wnt, t)− ηv1(znt)

γv2(znt)v2(wnt, t) + ηv2(znt)− P ′(Yt)
+ εynt.

The random term εynt is such that
E[εynt|pt, wnt, t, znt] = 0. (44)

It turns out that under A9, we can consistently estimate the parameters of the output supply function
by nonlinear least squares.

The output supply, however, does not allow us to identify the total cost function, because the fixed
cost and its heterogeneity distribution over firms (and time) cannot be identified from the expression of
ys. For this reason we append to our model a reformulated cost function. Equation (33) is problematic
because, even under A9, the random term ηcnt is likely to be correlated with ynt: random shocks affecting
costs lead firms to adjust output. To avoid this difficulty, we substitute ynt by

ysnt + εynt,

in the expression of the cost function (for the sake of conciseness, we skip the arguments of the supply
function and add a subscript nt to denote the function values). We assume that the random term of the
supply function exhibits some heteroskedasticity of the form:

σ2
y ≡ E[(εynt)

2|wnt, t, znt] = σ2
0 + σ2

1y
s
nt, (45)

where σ0, σ1 denote constant variance parameters, which are squared to ensure that σ2
y is positive. This

allows us to replace in the cost function, the squared production level by

y2nt = (ysnt)
2 + σ2

y + νnt, (46)

where E[νnt|wnt, t, znt] = 0. With these notations, the cost function becomes:

cnt = max{γu(znt)u(wnt, t) + ηu(znt), 0}+ γv1(znt)v1(wnt, t)y
s
nt + ηv1(znt)y

s
nt (47)

+
1

2
γv2(znt)v2(wnt, t)((y

s
nt)

2 + σ2
y) +

1

2
ηv2(znt)((y

s
nt)

2 + σ2
y) + ηc(znt) + εcnt,

16See Appendix B, Table B3, for some descriptive statistics for these variables.
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where

εcnt ≡ ζuntu(wnt, t) + ξunt + ζv1ntv1(wnt, t)ynt + ξv1ynt +
1

2
ζv2v2(wnt, t)y

2
nt +

1

2
ξv2y2nt (48)

+ γv1(znt)v1(wnt, t)ε
y
nt + ηv1(znt)ε

y
nt +

1

2
γv2(znt)v2(wnt, t)νnt +

1

2
ηv2(znt)νnt + ηcnt.

As under A9, E[εcnt|wnt, t, znt] = 0, we can append equation (47) to (43) and form a system whose
parameters can be consistently estimated by nonlinear least squares.

We specify the parametric functional forms for u v1 and v2 and consider that they belong to the family
of quadratic cost functions:

u (w, t; θu) = θ⊤ww + θ⊤wtwt+
1

2

w⊤Θwww

ζ⊤w
, (49)

v1 (w, t; θ1) y =

(
θ⊤1ww + θ⊤1twt+

1

2

w⊤Θ1www

ζ⊤w

)
y (50)

v2 (w; θ2) y
2 =

(
θ⊤2ww

)
y2 (51)

The vectors of parameters θw, θwt, θ1w, θ1t and θ2w have dimension (J × 1), whereas the symmetric
matrices Θww and Θ1ww are (J × J). In order to identify the terms in the linear and quadratic functions
of w, we impose that

Θww = Θ⊤
ww, Θ1ww = Θ⊤

1ww, (52)

ι⊤Θww = ι⊤Θ1ww = 0 (53)

where ι denotes a (J × 1) vector of ones. We use the Laspeyres price index ζ⊤w for normalization in
order to impose linear homogeneity in w on the cost function. Both fixed and variable cost functions are
flexible in the sense that they provide a second-order approximation to an arbitrary fixed and variable
cost function; see Chen and Koebel (2017) on this issue. There is a total of 5J+J(J−1) free parameters.
In our case, J = 3 and there are 21 free θ parameters in the deterministic part of the cost function, and
51 further β, δ, σ2

y parameters behind unobserved (and correlated) heterogeneity.

8 Estimation results

The theoretical model outlined in Sections 2 to 4 corresponds to a specific case of the more general
empirical model of Section 7. For this reason, we do not expect the statements of the different propositions
to be satisfied at each observation. However, we expect to see the results valid on average, over the years
and the population of firms. We discuss these estimates and their relationship with the model below.

8.1 Unobserved heterogeneity

We present our estimates of the unobserved fixed and variable cost efficiency (which corresponds to
stochastic technological change). In Section 7, we introduced 6 heterogeneity terms. To shorten the
presentation and simplify their interpretation, we aggregate these 6 terms in 2 terms compatible with our
theoretical part, namely equations (10) and (16). The aggregate fixed cost heterogeneity is defined as
the ratio between individual and the mean fixed cost function evaluated at wnt. Similarly, the variable
cost heterogeneity corresponds to the ratio between individual and mean variable cost function values
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(obtained for γv
1 = γv

2 = 1 and evaluated at wnt, ynt):

γ̂u
nt ≡

ûnt

û(wnt)
, γ̂v

nt ≡
v̂nt

v̂(wnt, ŷnt)
. (54)

Table 5 reports some percentiles of their respective distribution. Fixed cost is found to be zero for most
firms (71%), but it is significant for about 29% of the observations. There is considerable heterogeneity
about the size of these fixed costs. The distribution of γ̂v is centered on 1, and with a larger tail on the
left of the median than on the right.

Table 5: Distribution of firms’ unobserved heterogeneity

Q10 Q25 Q50 Q75 Q90
γ̂u
nt 0.00 0.00 0.00 0.19 3.56

γ̂v
nt –2.55 0.64 1.00 1.11 1.23

Note: Q10 to Q90 report the 10th to the 90th
percentile of the respective distribution.

The parameter γv represents variable cost heterogeneity. While about 25% of the firms have a variable
cost more than 16% below average (for which γv = 1), there are also 25% of the firms with average costs
higher than average by 6% or more. This unobserved heterogeneity is estimated to be economically
relevant and, according to Proposition 3, we expect it to strongly influence a firm’s size.

Figure 4 and 5 show kernel density estimates of the distribution of γ̂u (on the left) and γ̂v (on the
right).17 Both densities are single peaked, and show that there is a high probability mass around γu = 0

and around γv = 1.
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Figure 4: The density of fixed cost
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Figure 5: The density of variable cost
heterogeneity γ̂v

Table 6 summarizes the percentage of estimates corresponding to 4 possible estimated signs of the
linear and quadratic parts of the variable cost function, v1,nt and v2,nt, which vary for each observation
over the sample. In almost all cases, predicted marginal costs are convex (98% of the observations) with
both v1,nt and v2,nt positive. In 0.8% of the cases, we find evidence for decreasing marginal cost. Such a
result is only economically sustainable if firms are able to charge a markup over their marginal cost. We
identify all observations for which the estimated marginal cost was found to be decreasing, and compute

17The densities are estimated using a second-order Gaussian kernel and likelihood cross-validation to obtain optimal
bandwidths.
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their median output level: it was found to be 31% smaller than the median output of firms with increasing
marginal cost.

Table 6: Share of observations for different types of heterogeneity in v1,nt, v2,nt in %

v1n ≤ 0 v1n > 0
v2n ≤ 0 1.2 0.8
v2n > 0 15.3 82.7

Note: Figures are given in %.

Table 7 reports the estimates of unobserved heterogeneity over firm size. The share of firms with
no fixed costs and the median value of the fixed cost are given in the first two columns. For small
firms, we find that the large majority of firms have no fixed costs: 83% of the firms with one employee
produce without any fixed costs, but this rate decreases in firm size: less than 38% of the firms with
more than 200 employees have no fixed costs. An economic narrative can be provided: small firms have
lower profits (although their profit rate is higher), more credit constraints and a higher probability of
bankruptcy, which incite them to invest in technologies with no fixed cost. Bigger firms can afford fixed
costs, which are not directly productive (like organisational costs, or cost-reducing research development
expenditures), and which allow them to reduce the variable cost of production. The estimates of Table
7 are in line with the theoretical predictions: the fixed cost parameter is larger for bigger firms, and the
marginal (and variable) cost parameter is lower for bigger firms, in conformity with P3(i). These findings
also highlight the shortcomings of usual specifications for cost functions, such as the Cobb-Douglas or
the translog, which exclude, by construction, the occurrence of fixed costs.

Table 7: Fixed and variable costs by firm size

Firm size Su=0 ûnt/cnt γ̂u
nt γ̂v

nt

1 83.34 0.00 0.00 1.08
2–4 76.79 0.00 0.00 1.05
5–9 76.90 0.00 0.00 1.02

10–19 75.90 0.00 0.00 1.00
20–49 58.76 0.00 0.00 0.95
50–99 43.57 0.10 0.63 0.88

100–199 41.06 0.13 1.98 0.78
200–499 37.55 0.14 5.62 0.70

500+ 8.58 0.39 44.08 0.55
Total 70.73 0.00 0.00 1.00

Notes: Firm sizes are measured by the num-
ber of employees. Su=0 denotes the share of
firms with zero fixed cost. Column ûnt/cnt

reports the median value of the share of fixed
cost in total cost. Columns γ̂u

nt and γ̂v
nt re-

port the median value of the estimates γ̂u
nt

and γ̂v
nt.

8.2 Returns to scale and rate of technological change

The rate of Returns to Scale (RTS) is defined by

∂ ln c

∂ ln y
(w, t, y). (55)

When the estimated statistic is lower than one, the observation exhibits increasing RTS, while RTS
are constant or decreasing when the statistic is equal to or greater than one. The cost function also
comprises a time trend as argument, and allows us to compute estimates for the Rate of Technological
Change (RTC):

∂ ln c

∂t
(w, t, y). (56)
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Here we only take into account the direct effect of t on total cost, for constant level of the technological
parameters (which also change over time). These statistics depend upon the explanatory variables (both
observed and unobserved) and are different for each observation in our sample. Table 8 summarizes
the estimates of these elasticities over all observations of the sample. It is interesting to note that
about 35% of the estimates correspond to increasing RTS, about 25% to constant RTS (with a cost
to output elasticity comprised between 0.92 and 1.11), and 25% to decreasing RTS. The distribution
is not symmetric, but positively skewed: the lower percentiles are further away from 1 than the higher
percentiles. Estimates for increasing returns are quite common for cost functions, and this result contrasts
with the estimates usually found with a production function approach which frequently yields decreasing
RTS. See for instance Diewert and Fox (2008) for a discussion. These contradictory empirical results are
often attributed to the endogeneity of the production level in the cost function, which is expected to be
correlated with unobserved heterogeneity. As our approach controls both for unobserved heterogeneity
and endogeneity of output, our estimates are not affected by these sources of bias.

Table 8: Distribution of firms’ returns to scale and rate of technological change

Q10 Q25 Q50 Q75 Q90
∂ ln c/∂ ln y 0.59 0.92 1.04 1.11 1.22
∂ ln c/∂t –0.26 –0.04 0.00 0.04 0.32

Note: Q10 to Q90 report the 10th, to the 90th percentile
of the respective distribution.

The RTC represents deterministic technological change, because the time trend t is not random. The
results show a negative RTC for about half of the estimates. The estimates corresponding to the lower
and higher quantiles are quite large.

One of the main conclusions of the Cournot model with heterogeneity is that there is an ordering of
unobserved heterogeneity and firm size. We investigate this relationship further and report statistics by
firm size. Table 9 completes the information given in Tables 8 and reports the quartiles of RTS and RTC
by firm size. The median value of RTS is globally diminishing with firm size by about 6%. The share of
firms with increasing RTS is smaller among small firms than for bigger firms.

Regarding deterministic technological change, the estimated median value of ∂ ln c/∂t is stable with
firm size. RTC is important for medium-sized firms (column Q25), and represents a cost reduction of
about 5% and more by year, ceteris paribus. This rate then decreases with firm size (in absolute value),
and is close to 5% for the largest firms.

Table 9: Median RTS and RTC statistics by firm size

c/y RTS RTC
Firm size Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75
1 91.4 100.9 207.7 0.89 1.06 1.20 –0.07 0.00 0.21
2–4 93.5 108.7 261.1 0.90 1.04 1.13 –0.06 0.00 0.12
5–9 92.9 111.0 279.4 0.93 1.04 1.10 –0.03 0.00 0.05
10–19 91.2 108.6 253.1 0.95 1.04 1.10 –0.02 0.00 0.02
20–49 87.5 102.1 205.3 0.95 1.04 1.10 –0.04 0.00 0.02
50–99 86.8 104.1 230.2 0.94 1.03 1.09 –0.04 –0.01 0.01
100–199 83.0 104.4 196.8 0.92 1.02 1.08 –0.04 –0.01 0.01
200–499 81.2 100.4 225.4 0.91 1.02 1.08 –0.03 –0.01 0.01
500+ 94.0 126.7 437.8 0.86 1.00 1.07 –0.04 –0.01 0.01
Total 91.0 107.0 245.1 0.92 1.04 1.11 –0.04 0.00 0.04

Notes: Firm sizes are measured by the number of employees. Q25, Q50, and
Q75, respectively, denote the lower quartile, the median, the upper quartile of
the estimated statistics.

Figure 6 shows the evolution of the median of the unobserved variable cost efficiency (γ̂v, solid line)
and the RTS (dashed line), where both measures refer to the left y-axis, as well as the RTC (dotted line),
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referring to the right y-axis. The RTC corresponds to the median value (over all firms) of the estimates for
d ln c/dt. While it is found to be varying around zero, the effect on total cost is substantial. It should be
noted that the reported median values include only the deterministic changes over time. The stochastic
changes in γ̂v correlated with y and t are not included in this estimate of the reported RTC statistic.
This stochastic technological change is estimated by γ̂v, which is found to be increasing over 1994–2004
and decreasing from 2010 to 2017. The median value of the RTS varies little over time, between 1.02 and
1.06. Even though the median RTS is close to constant, there is substantial heterogeneity around this
value (see tables above).
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Figure 6: Median evolution of unobserved variable cost efficiency (γ̂v), the rate of Return to Scale (RTS)
(both left y-axis), and the Rate of Technological Change (RTC) (right y-axis). The time series are filtered
using a kernel-smoother.

9 Welfare implications of market power

In this section we simulate the different policies implied by SROW and LROW. That is, using the
estimated parameter values, we now investigate the welfare implications of market power and related
technological inefficiencies outlined in Section 4. While the NLS estimates provide decent fit between
predicted and observed level of production over all industries (see Appendix C, Table C1), we simulate
the policies only for firms belonging to the 6 2-digit industries with the highest model fit, in order to
reduce computation time and increase prediction accuracy (these are industries 11, 16, 22, 23, 27, and
31, see Table 1 for a description).18

Before exploring the outcome of simulated reallocation(s) of production, we have to investigate
whether assumption A6, required for P3, P5, and P6, and conjecturing a decreasing and convex re-
lationship between γu and γv, is empirically supported. Figure 7 reports the estimated values of the
parameters for the firms belonging to the 6 selected industries at the year 2015. We consider a single year
in order to reduce computational burden, and avoid dealing with technological change, entry and exit.
The orientation of the plots confirms that the estimates are broadly compatible with A6. This evidence
gives further support for the statement of the propositions.

18See Online Appendix C more more details on the simulation procedures.
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Figure 7: Estimates of unobserved fixed and variable cost efficiency, γu and γv, for selected industries of
the year 2015

We now turn to the simulation. First, we use the parameters’ estimates and compute the LRCE,
characterized by (22) and (23). The fixed point of the economy is numerically characterized in the second
row of Table 10. The simulated LRCE values for aggregate price and quantities are close to the actual
data (reported in the first row), which is anticipated, because the LRCE model was estimated to fit the
data. There are some differences, however, in the level of welfare, average costs and profit rate. This
is partly due to the simulation of the Cournot equilibrium, which imposes a production level equal to
zero on firms whose optimal production level would have been negative. About two firms in 77 cases are
affected by this corner solution (see Table 10). It turns out that the simulated levels of average cost are
somewhat higher, while the simulated profit rate and welfare are lower at the LRCE in comparison to the
data. Overall, the gap between the data and the model is rather small and the estimates are plausible.

Second, we simulate the SROW policy, whose results are reported in the third row of Table 10. Here,
the simulation consists in setting the market power of all firms to zero, which redistributes individual
outputs over firms in order to resolve the inefficiency due to market power. This new and regulated opti-
mum is described in Section 4.1, whose properties are given by P4 and P5. At SROW all firms producing
at the LRCE are still active (some firms produce zero output, though), so there is still a technological
inefficiency due to too many occurrences of inefficient firms. According to P4, a competitive output
reallocation would improve welfare, increase total output, reduce the price, and, under the assumptions
of P4, increase the concentration of output over firms. We simulate the SROW separately for each of
the 6 industries and find only small empirical support for welfare-reducing market power effects in the
short-run. The results reported in the SROW row of Table 10 show that only a small decline in aggregate
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price of about 0.7% can be achieved through the suppression of market power, while aggregate quantities
stay almost constant (and even slightly decrease). Also, this policy slightly decreases the median profit
rate, to –0.1% (from an initial level of 0.0% at the LRCE).

Given the predictions of P4, we initially expected to find output being reallocated from smaller to
larger firms (with lower marginal costs). However, the results reported in Table 10 show that industry
concentration slightly declines. This is not in contradiction with P4, because the proposition holds when
input prices are the same for all firms. In the data, however, average wages tend to be higher in bigger
firms, which reduces their profit as well as the welfare gains of allocating supplementary production to
those bigger firms. Our main conclusion is that the detrimental welfare effect of imperfect competition
is small: If all firms with market power set the price equal to their marginal cost, aggregate production
would hardly rise, and the aggregate price would only slightly decrease. This contrasts with the recent
literature on market power in the US, where Baqaee and Farhi (2020) and Edmond et al. (2023) find
more sizable effects of markups on aggregate productivity and welfare.

Table 10: Welfare and output distribution at LRCE, SROW and LROW

Y P W c/y u/y π N HH C3 C10

Data 234.5 99.0 124.3 98.4 - 1.3 79.0 12.0 48.3 74.0
LRCE 239.2 100.3 153.5 101.9 5.3 0.0 77.0 11.3 46.9 73.4
SROW 238.7 99.6 176.9 101.0 5.4 –0.1 77.0 9.1 42.4 65.8
LROW Q75 238.7 99.2 183.2 98.3 0.0 0.7 309.7 - - -
LROW Q90 238.8 97.2 191.1 96.7 0.0 0.7 263.9 - - -
LROW Q99 239.4 96.8 195.4 95.9 0.0 1.5 88.4 - - -

Notes. The table reports median values over all 4-digit industries. The raw values of the
variables Y , P , and W , are computed at the 2-digit industry level (over 6 industries). The
estimates of c/y (average cost), u/y (average fixed cost), and π are computed for each
firm. The statistics N , HH, CR3 and CR10 are computed at the 4-digit aggregation level.
N corresponds to the number of active firms. The Hirschman-Herfindahl index and two
concentration ratios (resp. for 3 and 10 firms) are denoted by HH,C3 and C10). At LROW
the concentration indices are not computed as they are equal, respectively, to 1/N, 3/N ,
and 10/N .

Figure 8 sheds further light on the narrow price and output gap between LRCE and SROW. It
represents the median value of relative wages (given by the dots) over all firms within a given size bin,
together with the median value of the variable cost heterogeneity γ̂v

n (given by the cross).

1 2−4 5−9 10−19 20−49 50−99 100−199 200−499 500+

Firm size

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4 Median wage of

wl, n wl

γ̂n

v

Figure 8: Median values of relative wages and γ̂v
n, by firm size, for the year 2015

This figure helps us to understand why the Cournot equilibrium is empirically very close to the SROW.
For constant wages, slight differences in the γv parameter yield substantial differences in marginal cost,
market power, and welfare. Figure 8 provides empirical evidence for the fact that bigger firms have (in
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the median) a substantially lower value of the γv parameter, and pay higher wages than smaller firms.
This increases the marginal cost of these firms, and reduces the negative welfare effect of market power.
More precisely, compared to firms with less than 99 employees, those firms with 100–199, 200–499, and
500+ employees, exhibit a higher median value of wages of 11%, 21%, and 39%, respectively, and a lower
value of the median variable cost parameter γ̂v

n of 2%, 6%, and 36%, respectively.
The last three rows of Table 10 describe LROW simulations which consist in removing firms’ market

power and replicating for the firm closest to the 0.75 quantile of the profit rate distribution (and similarly
for the 0.90 and 0.99 profit quantile). This procedure is inspired by P6(v), and the fact that total profit
is a good indicator of technological efficiency. More specifically, for each 4-digit industry belonging to
a given 2-digit industry, we identify the firm closest to the 75% (90%, 99%) quantile of the profit rate
distribution, which will be replicated. This induces reallocation among firms and adjustments in aggregate
price and output (just as described microeconomic textbooks). The iterative replication process stops
when the profit is close to zero in one of the 4-digit industries. For realism, we impose the constraint
that the weight of each 4-digit industry in the aggregate 2-digit industry is constant.

Our replication exercise shows that the price and the average cost of production decreases when we
select and replicate more efficient firms and go from the 0.75 to the 0.99 quantile. At the same time,
aggregate production and welfare increase. The average number of active firms in the LROW is close
to 310 for the row Q75, and decreases to 264 and 88 when a more efficient firm is replicated. This is a
consequence of the fact that more efficient firms are bigger on average. We also note that the median
value of the fixed cost is zero for the replicated firms. This shows that there exist efficient technologies
with no fixed cost.

10 Conclusion

This paper investigates Cournot competition with heterogeneous firms, and highlights the regularities
emerging in this context between firm size, market shares, marginal cost, and market power. For given
input prices, a useful theoretical result allows us to infer the ordering of firms’ unobserved cost efficiency
from the (observed) ordering of firms’ sizes. A further result generalizes Mankiw and Whinston (1986)’s
theorem about excess entry at Cournot equilibrium to the case of heterogeneous firms. Once firms’
heterogeneity is considered in the analysis, excess entry concerns small and inefficient firms which do not
contribute to reducing the market share and market power of bigger and efficient firms.

While greater firm size is a good indicator of cost efficiency, it is at the same time an indicator of
welfare inefficiency due to market power. The question of how to best deal with this contradiction from a
welfare perspective is an empirical question and should, as we propose, be tackled using both estimations
and simulations. The estimation results confirm that unobserved cost heterogeneity is substantial, and
affects both the fixed and the variable costs. A main finding presented in the paper, and identified using
firm-level data, is the negative correlation between fixed and variable cost heterogeneity. A second result,
obtained by using simulations, contrasts with the existing literature on misallocation due to market
power. Our simulation results show that removing market power has a negligible impact on aggregate
production and price, and triggers little output reallocation from bigger to smaller firms. The third result
of our contribution is provided by the simulation which consists in replicating technologically efficient
firms, and removing inefficient firms from the market. The effect on output price and welfare is quite
substantial, and achieved through the reduction of the average cost of production. The policy implication
that we draw from this simulation, is that in France cost-reducing innovations and technological progress
are more likely to improve welfare than policies aiming to fight against market power.
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Appendix

A Proof of the propositions

Proof of Proposition 1

P1(i) and P1(ii). By A1 it follows that ϵ (P, Y ) ≡ P ′ (Y )Y/P (Y ) < 0. By A2, at equilibrium P (Y ) +

P ′ (Y ) yNn > 0 hence P (Y )
(
1 + ϵ (P, Y ) yNn /Y

)
> 0. Summing these inequalities over N gives P1(i).

The inequality also implies that individual market shares are bounded above: yNn /Y < −1/ϵ (P, Y ).
P1(iii). From the first-order condition ∂cn/∂y = P (Y )(1+ϵ (P, Y ) yNn /Y ) it turns out that at Cournot

equilibrium

yNi > yNj ⇔ ∂ci
∂y

(
wi, y

N
i

)
<

∂cj
∂y

(
wj , y

N
j

)
.

Claim P1(iv) directly follows from P1(iii) and the definition of the price markup P/(∂cn/∂y).
Claim P1(v) corresponds to Okumura (2015, Lemma 1). □

Proof of Proposition 2

Input prices could be heterogeneous over firms, but without affecting the result, so we use notation w in-
stead of wn. The Cournot equilibrium is characterized by N individual production levels yNn

(
w, {γv

n}
N
n=1

)
and Y N

(
w, {γv

n}
N
n=1

)
such that the first- and second-order optimality conditions are satisfied. We find

it convenient to omit the arguments
(
w, {γv

n}
N
n=1

)
of Y N and yNn in the equations below. At Cournot

equilibrium, individual and aggregate output levels satisfy:

P
(
Y N
)
+ P ′ (Y N

)
yNi = γv

i

∂v

∂y

(
w, yNi

)
Y N =

N∑
n=1

yNn

Differentiating the first-order optimality condition with respect to γv
i for two different firms, i and n,

gives

(
P ′ (Y N

)
+ P ′′ (Y N

)
yNi
) ∂Y N

∂γv
i

+ P ′ (Y N
) ∂yNi
∂γv

i

=
∂v

∂y

(
w, yNi

)
+ γv

i

∂v2

∂y2
(w, yi)

∂yNi
∂γv

i(
P ′ (Y N

)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i

+ P ′ (Y N
) ∂yNn
∂γv

i

= γv
n

∂v2

∂y2
(
w, yNn

) ∂yNn
∂γv

i

.

Let us define

aNn ≡
[
P ′ (Y N

)
− γv

n

∂v2

∂y2
(
w, yNn

)]−1

,

which is negative by A3(ii), and write

∂yNi
∂γv

i

= aNi ·
(
∂v

∂y

(
w, yNi

)
−
(
P ′ (Y N

)
+ P ′′ (Y N

)
yNi
) ∂Y N

∂γv
i

)
∂yNn
∂γv

i

= −aNn ·
(
P ′ (Y N

)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i
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If we sum all partial effects ∂yNn /∂γv
i over all n = 1 to N this gives

∂Y N

∂γv
i

= −
N∑

n=1

aNn ·
((

P ′ (Y N
)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i

)
+ aNi

∂v

∂y

(
w, yNi

)
⇒ ∂Y N

∂γv
i

=
aNi

1 +
∑N

n=1 (P
′ (Y N ) + P ′′ (Y N ) yNn ) aNn

∂v

∂y

(
w, yNi

)
.

Then A1 guarantees that ∂v/∂y
(
w, yNi

)
≥ 0, by A3 aNi < 0, and A4 implies that the denominator is

positive, so
∂Y N

∂γv
i

≤ 0.

Replacing this term in the individual output supply reaction, shows that for n ̸= i,

∂yNn
∂γv

i

≥ 0

so that necessarily
∂yNi
∂γv

i

≤ 0.

We also see that a marginal change in the fixed cost parameter γu
i , holding the parameter γv

i constant,
has no effect on the Nash equilibrium. These inequalities prove claims (i) to (iv). Claim P2(v) follows
from the definition of the profit function

πN
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
)
yNi

(
w, {γv

n}
N
n=1

)
− γu

i u (w)− γv
i v
(
w, yNi

(
w, {γv

n}
N
n=1

))
which is impacted by a change in γu

i and γv
i as follow

πN
i

∂γu
i

(
w, {γv

n}
N
n=1

)
= −u (w) ≤ 0

πN
i

∂γv
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
) ∂yNi
∂γv

i

+ P ′ (Y N
)
yNi

∂Y N

∂γv
i

− vi − γv
i

∂v

∂yi

∂yNi
∂γv

i

= P ′ (Y N
)
yNi

∂Y N
−i

∂γv
i

− vi < 0,

where the last simplification is obtained by using firm’s i first-order condition for optimality. Similarly:

πN
i

∂γv
j

(
w,
{
γv
j

}N
j=1

)
= P ′ (Y N

)
yNi

∂Y N
−i

∂γv
j

≥ 0.

□

Proof of Proposition 3

P3(i). As input prices are identical for both firms we skip w from most of our notations and write for
instance v1 instead of v1 (w). When the cost functions are quadratic, marginal costs are linear, and for
yNi < yNj at Nash equilibrium we also have

∂ci
∂y

(
w, yNi

)
>

∂cj
∂y

(
w, yNj

)
(57)

⇔ γv
i ·
(
v1 + v2y

N
i

)
> γv

j ·
(
v1 + v2y

N
j

)
.
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By convexity, v2 ≥ 0, we use the fact that γv
i > 0, γv

j > 0 and yNj > yNi , to conclude that this inequality
is equivalent to γv

i > γv
j .

P3(ii). We use the fact that for two numbers a ≥ 0 and b such that a+ b ≥ 0, we also have a+ b/2 ≥ 0.

We identify

a ≡
(
γv
i − γv

j

)
v1

b ≡ v2 ·
(
γv
i y

N
i − γv

j y
N
j

)
The term a is nonnegative by P3(i) and A2 implies that v1 ≥ 0. The condition a+ b ≥ 0 corresponds to
(57). The implied inequality a+ b/2 ≥ 0 is equivalent to claim P3(ii).
P3(iii). For γv

i > γv
j , and same technological shock η, relationship A7 implies that γu

i < γu
j and

ui (w) < uj (w) .

P3(iv). From γv
i > γv

j > 0 and A7 with ηi = ηj we have γu
i < γu

j and so

γu
i

γv
i

<
γu
j

γv
j

⇔
(
2γu

i u

γv
i v2

)1/2

<

(
2γu

j u

γv
j v2

)1/2

.

□

Proof of Proposition 4

P4(i). At the LRCE characterized by (3), it turns out that for any active firm,

P (Y C
−n + yn)−

∂cn
∂yn

(wn, yn) ≥ 0. (58)

By A1 and A3(ii) this function is decreasing in yn at the LRCE for any active firm. At SROW, for
maximizing W, the social planner chooses {ym}Mm=1 in order to satisfy P

(∑M
m=1 ym

)
−∂cn/∂yn (wn, yn) =

0 for any active firm, which requires that
∑M

m=1 y
S
m ≥

∑M
m=1 y

C
m. Equivalently, by A1, we have P

(
Y S
)
≤

P
(
Y C
)
.

P4(ii). By definition, WS maximizes welfare by choosing the optimal level of production over all firms
active at the LRCE, hence WS ≥ WC . It follows directly from P4(i) and profit maximization, that:

πS
n = P (Y S)ySn − cn

(
wn, y

S
n

)
< P (Y C)ySn − cn

(
wn, y

S
n

)
≤ P (Y C)yCn − cn

(
wn, y

C
n

)
= πC

n .

P4(iii)–P4(v). At the aggregate production level Y S ≥ Y C the firms’ production plans have to satisfy:

∂cm
∂ym

(wm, ySm) =
∂cn
∂yn

(wn, y
S
n ) = P

(
Y S
)
, (59)

for active firms. At the LRCE, firms’ marginal costs are related by:

∂cn
∂yn

(wn, y
C
n ) = P ′(Y C)

(
yCn − yCm

)
+

∂cm
∂ym

(wm, yCm),

so that bigger firms have lower marginal cost at the LRCE (just as in P1). This equation also shows
how each firm n has to adjust yCn in order to achieve ySn satisfying (59). Let us order firms from lower to
higher marginal cost, and define “bigger firms“ as those having at the LRCE a marginal cost lower than
P
(
Y S
)
, and “smaller firms“ the other group with ∂cn/∂yn (wn, yn) ≥ P

(
Y S
)
.

Starting from the LRCE, the social planer requires that:

• bigger firms produce more output: ySn > yCn . Bigger firms with lower but increasing marginal costs
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increase their production up to the point where (59) is satisfied (A3 ensures that such a point
exists). Bigger firms with decreasing marginal cost at yCn cannot have globally decreasing marginal
cost by A3, so their production can be increased to met (59).

• smaller firms with decreasing marginal cost produce more if this allows them to sufficiently decrease
their marginal cost and reach P

(
Y S
)
. If this is not possible, they are shut down.

• smaller firms with increasing marginal costs have to produce less and reduce their marginal cost in
order to satisfy (59). If this is not possible, they should stop their activity.

P4(vi). In points P4(iii)–P4(v) we have identified either firms which should continue to produce at
SROW, or firms which should be shut down. So that NC ≥ NS . □

Proof of Proposition 5

We use the fact that the Hirschman-Herfindahl index of concentration H
(
Y,
∑N

n=1 y
2
n

)
is nonincreasing

in N and increasing when individual outputs are redistributed from smaller to bigger firms. Under
decreasing returns to scale, point P4(v) vanishes, and point P4(vi) can be sharpened to NS ≤ NC . Let
us define κ ≡ Y S/Y C ≥ 1, and starting from LRCE, let us scale all individual output levels up to κyCn .

This leaves the value of Hirschman-Herfindahl index unchanged as

H

Y C ,

NC∑
n=1

(
yCn
)2 =

NC∑
n=1

(
yCn
Y C

)2

=

NC∑
n=1

(
κyCn
Y S

)2

= H

Y S ,

NC∑
n=1

(
κyCn

)2 .

Individual firms have now seen their production arbitrarily scaled up by κyCn , so that aggregate production
is equal to Y S . However, in order to produce Y S optimally, such as characterized in P4, the social planner
still has to redistribute the individual output levels κyCn while keeping the aggregate level fixed at Y S .
We will show that this is achieved by redistributing output from smaller to bigger firms, which increases
the value taken by H at SROW. We know that at the LRCE

∂cn
∂y

(w, yCn ) = P ′(Y C)
(
yCn − yCm

)
+

∂cm
∂y

(w, yCm)

and so yCn ≥ yCm iff ∂cn/∂y(w, y
C
n ) ≤ ∂cm/∂y(w, yCm) as in P1. By A7, A8, and convexity, using also

P3(i), we have for any value of y

0 ≤ ∂2cn
∂y2

(w, yn) = γv
nv2 (w) < γv

mv2 (w) =
∂2cm
∂y2

(w, ym).

This inequality implies that marginal costs increase more strongly in small firms; so that if we inflate all
individual outputs by multiplication with κ ≥ 1 then,

∂cn
∂y

(w, κyCn ) ≤
∂cm
∂y

(w, κyCm),

which means that bigger firms have still lower marginal costs at
{
κyCn

}M
n=1

than smaller firms. The social
planner wants to implement the equality:

∂cn
∂y

(w, ySn ) = P (Y S)

which she can achieve from individual production levels
{
κyCn

}M
n=1

, by increasing further the output of
the bigger firms (with lowest marginal cost), and decreasing the output of the smaller firms characterized
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by
∂cm
∂y

(wm, κyCn ) > P (Y S).

This redistribution of constant aggregate output from small to bigger firms increases the value of H

achieved at SROW. □

Proof of Proposition 6

P6(i). Under the above assumptions, W is continuous, nondecreasing in γ, and the set of values taken by
the welfare function over ΓL is closed and bounded from below, and so for any given level of y, W admits
a maximum over Γ. The maximum of W on Γ is reached on ΓL ⊆ Γ. The points on the technological
frontier satisfy γv = e(γu), a function which under A6 is strictly convex. For any (w, y) function W has
straight line isoquants in (γu, γv), and so reaches a unique maximum in (γu, γv) on the technological set.
P6(ii). From P6(i) it follows that at the LROW point, the planner adopts the same technology γL for
all active firms, and so all firms produce the same quantity y = Y/N. Under this constraint, the welfare
function (24) becomes:

WL (Ny) =

∫ Ny

0

P (s) ds−NcL (w, y) , (60)

with cL defined in (28). Differentiation wrt y and N then yield the first-order conditions for a maximum,
which states the zero profit condition, and the equality between price and average cost. Together they
imply that cL(w, yL)/yL = ∂cL/∂y(w, yL) = P (Y L), and returns to scale are constant locally. (If N is
restricted to be an integer, then this condition is approximately valid for small values of y in comparison
to Y .)
P6(iii). Both optimization problems (26) and (25) have the same objective function, but there are fewer
constraints in (26), hence WL ≥ WS .

P6(iv). If the inequality holds, then the Kuhn and Tucker complementary slackness condition implies
that γu = 0.
P6(v). The claim follows because the first- and second-order conditions to both problems are identical.

□

B Data and descriptive statistics

B.1 Data cleaning

As mentioned in the main text, the industry for food processing (10), the manufacture of tobacco products
(12), and the manufacture of coke and refined petroleum products (19) are excluded from the treated
sample. Further, we only keep observations reporting values larger than zero in capital stock (tangible
assets), number of employees, materials, and production. Table B1 illustrates summary statistics of a
typical four-digit industry if no data cleaning at all was made. The table shows that, compared to the
case with data cleaning (Table 2), the average number of firms is more than doubled, given by 772. This
is mainly induced by the inclusion in Table B1 of industry 10 and to a smaller extent by keeping firms
reporting zero and missing values in the number of employees. However, the table also shows that firms
with less than 10 (500 or more) employees account for about 6.7% (53.0%) of total production, which is
very close to the figures presented based on the cleaned sample. Hence, our sample generally matches
the main characteristics of the French manufacturing sector.
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Table B1: Average statistics of a typical four-digit manufacturing industry without data cleaninga

Firm
sizeb # of firms Share of

firms
Share of

employees
Share of

production
Average

cost
Profit
rate

0 153 26.06 0.02 3.69 106.50 –6.79
1 59 10.05 0.48 0.35 93.62 4.43
2–4 88 14.99 2.00 1.03 95.66 2.76
5–9 74 12.61 3.99 2.07 94.67 3.17
10–19 52 8.86 5.72 3.36 93.74 3.71
20–49 49 8.35 12.39 8.62 92.74 4.01
50–99 16 2.73 8.88 6.55 93.83 3.08
100–199 9 1.53 10.86 8.82 94.40 2.41
200–499 6 1.02 14.88 13.65 94.41 1.95
500+ 3 0.51 40.77 51.38 95.87 1.03
NA 78 13.29 0.00 0.48 100.44 –2.42
Total 587 100.00 99.99 100.00 96.37 1.98
a All figures represent averages over all four-digit industries and years (1994–2019). Shares are

given in %.
b Firm sizes are measured by the number of employees. The group NA represents those firms with

missing values in the number of employees.

B.2 Further descriptive statistics

Table B2 shows shares of firms, employees, and production wrt each considered 2-digit industry. The
table shows that the manufacturing of metal products (25) represents the biggest industry in terms of
the average number of firms and average employment, representing about 23% of all firms and 14% of
total employment. Instead, the manufacturing for motor vehicles (29) represents the biggest industry in
terms of production, accounting for about 15% of total production. See also De Monte (2024) for more
descriptive statistics using similar data.

Table B2: Average statistics by 2-digit manufacturing industrya

Industryb # of firms Share of
firms

Share of
employees

Share of
production

Average
cost

Profit
rate

11 1098 1.90 1.78 4.01 86.27 3.12
13 2290 3.96 2.93 1.95 91.87 2.68
14 2916 5.04 3.19 1.67 93.76 1.36
15 840 1.45 1.42 0.86 78.09 2.13
16 4417 7.64 2.95 2.03 90.13 4.34
17 1153 1.99 3.37 3.31 95.30 2.96
18 6711 11.61 3.65 1.84 102.94 5.82
20 1907 3.30 7.27 12.61 90.28 0.63
21 333 0.58 3.55 4.35 114.14 1.28
22 3491 6.04 8.52 6.09 94.70 3.49
23 3807 6.59 5.46 5.45 91.08 2.86
24 776 1.34 3.78 5.38 89.92 2.96
25 13569 23.47 13.78 9.31 87.78 6.31
26 2186 3.78 6.41 4.53 157.99 0.42
27 1694 2.93 6.00 5.13 91.85 3.04
28 4448 7.69 8.14 6.93 96.96 1.19
29 1471 2.54 9.87 14.99 95.44 0.12
30 528 0.91 5.35 8.14 96.34 0.40
31 4176 7.22 2.58 1.42 87.21 3.92
Total 57811 100.00 100.00 100.00 93.60 4.00
a All figures are based on the cleaned dataset and represent averages over the period 1994–2019. Shares

are given in %.
b 11-beverages, 13-textiles, 14-wearing apparel, 15-leather/related products, 16-wood/products of

wood and cork, 17-paper/paper products, 18-printing/reproduction of recorded media, 20-
chemicals/chemical products, 21-pharmaceutical products/preparations, 22-rubber/plastic products,
23-other non-metallic mineral products, 24-basic metals, 25-fabricated metal products, 26-computer,
electronic, and optical products, 27-electrical equipment, 28-machinery and equipment, 29-motor
vehicles/(semi-) trailers, 30-other transport equipment, 31-furniture.

Table B3 illustrates the distribution of some variables included in znt to capture unobserved hetero-
geneity for the estimation of the cost function (see Section 7 and A9). As in the descriptive statistics
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section, the table reports averages in a typical 4-digit industry, as well as the distribution of firm sizes
over the 1994–2019 period. Beside the average number and the average share of firms, the table reports
the share of investing firms, the investment-to-labor ratio, and the average firm age as well as the average
number of observed periods (denoted by Tn in the main text). Note that firms’ investment, int, is given
by expenditures in intangible assets, reported in the balance sheets, deflated by the corresponding 2-digit
investment price index. Unfortunately, firms’ investments are not observed for the specific year 2008. We
replace the largest part of these missing values by computing in2008 = Kn2009 − (1− δ2008)Kn2008, where
Knt represents firms’ intangible assets from the balance sheet, deflated by a corresponding 2-digit price
index, and δt denotes the capital depreciation rate, likewise calculated at the 2-digit level. It can be seen
that the share of investing firms is increasing in firm size, where the share of investing firms with only
one employee is given by 60%, whereas almost all firms with 500 and more employees report investments
in capital (99%). Regarding the investment-to-labor ratio there seems to be two clusters: one with an
investment level of about 6000e (or 0.06) per worker and another cluster with average investment around
10000e. Considering firms’ average age and average number of observed periods, it can be seen that, as
expected, both variables are increasing in firm size. That is, while the average age (number of observed
periods) of firms with only one employee is given by 12.3 years (4.9 periods), the largest size group,
firms reporting 500 and more employees, are on average 31.4 years old (and observed on average for 14.1
periods). Firms’ age, ant, is calculated as the difference between the current year and the date of creation
of the firm. Note that firms’ age does not necessarily correspond to the number of observed periods as
especially small firms often show temporal inactivity and/or drop out of the sample because of missing
values. Both variables should represent good proxies to capture unobserved heterogeneity.

Table B3: Further average statistics by 4-digit manufacturing industrya

Firm
sizeb # of firms Share

of firms

Share of
investing

firms

Investment-
to-labor

ratio

Firm
age

# of obs.
periods

1 42 13.55 60.08 0.16 12.39 4.87
2–4 73 23.55 69.85 0.07 14.21 7.81
5–9 66 21.29 81.89 0.06 17.45 10.58
10–19 49 15.81 90.20 0.06 20.66 12.31
20–49 47 15.16 94.60 0.06 23.69 12.40
50–99 15 4.84 96.64 0.07 26.49 12.93
100–199 9 2.90 97.66 0.08 27.84 13.32
200–499 6 1.94 98.29 0.10 28.46 13.89
500+ 3 0.97 98.69 0.12 31.41 14.16
Total 310 100.01 81.00 0.08 18.55 10.00
a All figures are based on the cleaned dataset and represent averages over the period 1994–2019.

Shares are given in %.
b Firm size is measured by the number of employees.

C Further estimation results

Table C1 summarizes the correlation between fitted and observed values obtained over 19 NLS regressions
(for each 2-digit industry). The table shows that the NLS estimates provide decent fits, which is necessary
for our simulation of output redistribution from less to more productive firms to make sense. In order
to reduce computation time and increase prediction accuracy, we only consider firms belonging to the
6 2-digit industries with the best fit between predicted and observed level of production (given by the
industries 11, 16, 22, 23, 27, and 31, see Table 1 for a description).
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Table C1: Correlation between observed and predicted values

corN (cnt, ĉnt) corN (ynt, ŷnt) corN (mrnt, ∂̂c/∂y)
Lower quartile 0.86 0.77 0.99
Median 0.91 0.86 0.99
Upper quartile 0.94 0.91 0.99

The correlations are computed for each of the (19) 2-digit industry sep-
arately, using industry-specific parameters’ estimates. The table reports
the quartiles of these 19 correlations.
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